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ABSTRACT 
In today’s technology, even leading medical institutions diagnose their cardiac patients through ECG 
recordings obtained at healthcare organizations (HCO), which are costly to obtain and may miss 
significant clinically-relevant information. Existing long-term patient monitoring systems (e.g., Holter 
monitors) provide limited information about the evolution of deadly cardiac conditions and lack 
interactivity in case there is a sudden degradation in the patient’s health condition. A standardized and 
scalable system does not currently exist to monitor an expanding set of patient vitals that a doctor can 
prescribe to monitor. The design of such a system will translate to significant healthcare savings as well 
as drastic improvements in diagnostic accuracy. In this chapter, we will propose a concept system for 
real-time remote cardiac health monitoring, based on available and emerging technologies today. We 
will analyze the details of such a system from acquisition to visualization of medical data. 
 

Keywords: e-Health, Tele-medicine, Remote health monitoring, privacy-preserving health 
monitoring. 
 



 

INTRODUCTION 
Conventional tests to assess the risk of cardiovascular diseases (CVD) involve clinical history, 

physical examination and electrocardiogram (ECG), which are highly observational and relatively 
insensitive (Petr, et al., 2014; Prasad, et al., 2013; Saul, Schwartz, Ackerman, & Triedman, 2014; Vatta, 
2009).  Although the pathology of CVD starts at earlier stages than it is observable by conventional 
methodologies, there are no clinical tests that can detect the onset and progression of CVD. Continuous 
disease monitoring at a healthcare organization (HCO) is difficult as most tests rely on extensive hospital 
based procedures, and results can vary (Ndumele, Baer, Shaykevich, Lipsitz, & Hicks, 2012; Loon, et al., 
2011; Kobza, et al., 2014; Juntilla, et al., 2014). Long-term real-time monitoring of clinically-relevant 
cardiac biomarkers remotely (e.g. at the patient’s house) could provide invaluable diagnostic information, 
while eliminating the need to administer such tests at the HCO could translate to substantial cost savings.  

 Currently, there are no suitable methods to assess and predict the risk of CVD and 
chronic heart failure in real time to enable effective therapeutic intervention  (Lin, Zhang, & Zhang, 2013; 
Jiao, et al., 2014; Gonzales, White, & Safranek, 2014). Mechanisms that are involved in the development 
of CVD are complex and involve a variety of interrelated processes including changes in blood 
cholesterol, lipid metabolism, inflammation and oxidative stress. Pathological role of reactive oxygen 
species (ROS) in the development of CVD, especially in conditions related to cardiac ischemia and 
chronic heart failure is well studied (Nojiri, et al., 2006; Otani, 2004; Searles, 2002; Singh, 1995; Tsutsui, 
2001). Among ROS species, superoxide radicals and nitric oxide (NO) have both been identified as 
important parameters in the pathophysiological alterations in myocardial and vascular function (Kundu, 
2012; Salamifar & Lai, 2013). Other studies have related cardiac proteins including cardiac troponins 
(cTn), myoglobin (MYO), b-type natriuretic peptide (BNP) and C-reactive protein (CRP) with the onset 
of cardiac infarction (Wojciechowska, et al., 2014). 

 The proposed system in Figure 1 will enable physicians to monitor patients and have 
automatic alarm providing feedback on patient long-term health status. This monitoring can be continuous 
in patients with high risk for life-threatening events, or periodic with a recording frequency depending on 
disease severity. This system is capable of monitoring ECG-related parameters using commercially 
available ECG patches, as well as multiple other aforementioned bio-markers of a patient via custom bio-
sensors in real-time. Sensory recordings of the patient will be transmitted from the patient’s house (or any 
remote location) to the datacenter of the HCO in real-time in a secure fashion using well established 
encryption mechanisms (NIST:FIPS-197, 2001). Combining ECG monitoring parameters with such 
biomarkers improves the utility of the monitoring system to far beyond what is currently achievale with 
ECG-only monitoring or single-biomarker monitoring (e.g., Glucose (Sensys Medical)). This technology 
will be disruptive because it has the potential to shift the paradigm of patient management in the US 
healthcare system.  

 While the comprehensive nature of this system substantially improves its diagnostic 
value, it introduces research challenges which this chapter aims to address. Visualization of such multi-
dimensional data, encompassing ECG parameters and multiple bio-markers is not straightforward. Well 
known ECG-based visualization of a patient’s cardiac operation has been in use for over a century 
(Fridericia, 1920), but provides limited information for a short operational interval. In this chapter, 
visualization mechanisms will be presented that allow the doctor to visualize ECG recording parameters 
over 24 hours. 

 The chapter will detail the design of a concept real-time remote health monitoring system 
as follows. Next section presents the state of the art in bio-medical sensing, particularly focusing on 
nanoparticle-based detection of biomarkers, use of electrochemical sensors for the detection of oxidative 
stress, label-free aptasensors for the detection of bio-molecular recognition process and the integration of 
field portable biosensors with wireless communication devices.  This first section, which focuses mainly 
on the chemical aspects of the system in Figure 1, will be followed by design considerations for bio-



 

sensor circuit interface. A tamper-resistant sensing mechanism will be introduced along with the circuit 
interface which takes advantage of the chemical properties of the sensors. Third section will present an 
Internet-of-Things (IoT)-based sensory architecture, focusing on concentrator and cloudlet designs, as 
well as reliable and trustworthy sensing schemes. Communications standards, as well as inter-operability 
issues for the presented architecture will be elaborated on in the fourth section, followed by the last 
section presenting visualization components. Concluding remarks as well as a discussion of the open 
issues and future directions will be provided at the end of the chapter. 

 

 
 

Figure 1: Proposed cardiac monitoring system: I) sensory acquisition, II) 
sensor interface, III) secure data transmission, IV) visualization and 
analytics. 

  
BIO-MEDICAL SENSOR DESIGN 
A comprehensive cardiac monitoring system requires the real-time detection of oxidative stress as well as 
the aforementioned cardiac proteins such as Troponin, MYO, and CRP as shown in Figure 1 (denoted as 
"I"). For the nanoparticle based detection of clinically relevant biomarkers, Andreescu’s laboratory has 
pioneered an inexpensive sensing technology based on redox active nanoparticle of cerium oxide 
(nanoceria) used as catalytic amplifiers (Ornatska, Sharpe, Andreescu, & Andreescu, 2011). This 



 

technology is based on probing biomolecular interactions to determine clinically relevant biomarkers with 
high sensitivity and selectivity, enabling the detection of NO, superoxide radicals, H2O2, glucose, 
dopamine, glutamate and antioxidants (Sharpe, Frasco, Andreescu, & Andreescu, 2013) in biological 
fluids including plasma, cerebrospinal fluid, tissues and animals (Cortina-Puig, et al., 2010; Njagi, Ball, 
Best, Wallace, & Andreescu, 2010; Ozel, Ispas, Ganesana, Leiter, & Andreescu, 2014; Ganesana, 
Erlichman, & Andreescu, 2012). These designs take advantage of redox and surface functionality changes 
of nanoceria particles in the presence of redox compounds associated with biomolecular recognition 
events, including catalytic enzyme reactions and biomolecular recognition events (Hayat & Andreescu, 
2013; Hayat A. , Andreescu, Bulbul, & Andreescu, 2014; Hayat, Bulbul, & Andreescu, 2014). In the 
presence of H2O2, the nanoceria enhances the catalytic oxidation of H2O2 (Ornatska, Sharpe, Andreescu, 
& Andreescu, 2011) leading to increased sensitivity for the detection of H2O2 as a model of ROS, and of 
substrates of oxidase enzymes that are enzymatically producing H2O2  (Babko & Volkova, 1954; Hayes, 
Yu, OKeefe, & Stoffer, 2002). These sensors have detected physiological levels of glucose, dopamine, 
glutamate and lactate in clinical samples using both colorimetric (Ornatska, Sharpe, Andreescu, & 
Andreescu, 2011) and electrochemical methods (Ornatska, Sharpe, Andreescu, & Andreescu, 2011; Ispas, 
Njagi, Cates, & Andreescu, 2008; Njagi, Ispas, & Andreescu, 2008). 

 We hypothesize that by measuring various biomarkers in parallel, correlating them to 
conventional ECG tests, and tracking their evolution, it is possible to quantitatively define a clinical 
cardiac risk profile that can be used in the prevention and personalized therapeutic intervention of cardiac 
diseases. Two custom multi-sensor arrays must be developed to assess the evolution of biomarkers related 
to different CVD mechanisms as shown in Figure 1. Cholesterol/oxidative stress panel includes 
Cholesterol(Ch), superoxide radicals (O2-) and nitric oxide (NO), while the protein panel includes cTn, 
MYO and CRP, which have been associated with the onset of myocardial infarction. In (Alkasir, 
Ornatska, & Andreescu, 2012), Alkasir et al. developed portable sensors with colorimetric and 
electrochemical detection for monitoring clinical analytes including glucose (Ornatska, Sharpe, 
Andreescu, & Andreescu, 2011) glutamate, dopamine and antioxidants (Sharpe, Frasco, Andreescu, & 
Andreescu, 2013), and low-cost screen-printed sensors that are the basis of portable glucose monitoring 
devices (Alkasir, Ganesana, Won, Stanciu, & Andreescu, 2010; Istamboulie, Andreescu, Marty, & 
Noguer, 2007; Andreescu, Barthelmebs, & Marty, 2002; Andreescu, Magearu, Lougarre, Fournier, & 
Marty, 2001) and a multi-sensor array that allows field detection of multiple compounds (Sharpe, et al., 
2014), where each sensor in the array contains a different signal responsive material that reacts with a 
target analyte (Hayat & Andreescu, 2013), as exemplified in Figure 2. Proposed system should expand on 
(Hayat & Andreescu, 2013) to monitor conformational changes of surface-confined aptamers towards 
biomarkers including MYO, CRP and BNP. 

 The proposed system in this chapter is based on the sensors developed in (Ornatska, Sharpe, 
Andreescu, & Andreescu, 2011; Hayat, Bulbul, & Andreescu, 2014; Ozel, Ispas, Ganesana, Leiter, & 
Andreescu, 2014). Figure 3 depicts a NO sensor voltammogram, in which the sensor responds to different 
voltage excitations (x axis) with a resulting current (y axis) at varying NO concentrations (different 
colors). Figure 3 could be thought of as being a 3D plot, with voltage (x), current (y), and concentration 
(z) axes. For sensing, voltage axis (x) is omitted by plotting concentration–current curves at a fixed 
voltage yielding the highest current (e.g., 0.35V for the NO sensor in Figure 3). The resulting 2D 
calibration curve contains all necessary information for optimum sensitivity. 



 

 

Figure 2: Label free detection of OTA based on conformational changes of 
surface confined aptamer-PEG macromolecular adducts showing 
sequential electrochemical detection steps. 
  

 To enable early detection and prevention, there is a need for a methodology that could quantify 
clinical changes related to the evolution of disease and transmit the information in real time to the health 
care provider for early intervention. In this aim, we suggest that, cardiac biomarkers, combined with ECG 
parameters will provide a comprehensive set of diagnosis data. The proposed sensor will consist of a 
series of electrodes, each designed to detect one specific biomarker. The probe can be multiplexed in 
order to quantify multiple cardiac biomarkers simultaneously. To draw fundamental biomedical 
information regarding the evolution of these biomarkers, this sensor data must be correlated with ECG 
recording from cardiac patients. This will allow individual profiling of a cardiac risk for monitoring the 
progression of cardiac disease and assess an individualized risk factor. The development of 
electrochemical microsensors, which have been successfully used in vitro and in vivo settings are 
documented in (Ganesana, Erlichman, & Andreescu, 2012; Njagi, Ball, Best, Wallace, & Andreescu, 
2010). 

 This chapter proposes to integrate these sensors to measure comprehensively the 
oxidative/nitrosative profile, and correlate these data with cardiac protein biomarkers, and ECG. Our 
proposed testing of this technology is to study samples from cardiac patients in microliter blood samples 
and the assessment of the selectivity of these sensors for measurements in other matrices that are collected 
non-invasively including urine and saliva. This chapter focuses on two classes of biomarker signatures: 
(a) cholesterol and oxidative stress profile that involves time point measurements of the evolution of the 



 

cholesterol system and oxidative stress, and (b) a protein biomarker panel to determine proteins that are 
predictive of myocardic infarction. The sensors can be fabricated on low cost disposable screen-printing 
(SPE) platforms. These two types of biomarker signatures will be detailed below. 

  

Figure 3: Electrochemical responses to various concentrations of NO using 
differential pulse voltammetry. 
  

Cholesterol and Oxidative Stress Panel 
First, we propose to integrate the recently developed sensor with nanoparticle amplification (Ornatska, 
Sharpe, Andreescu, & Andreescu, 2011) into an array system. The cholesterol sensor will utilize the 
enzyme cholesterol oxidase that will be stabilized on the SPE working electrode which will measure 
electrochemically the enzyme generated H2O2 at its oxidation potential of 0.5 V. Previously developed 
sensors based on this technology allow sensitive detection of physiological levels of glucose in human 
serum (Ornatska, Sharpe, Andreescu, & Andreescu, 2011). The superoxide sensor will use surface 
attached cytochrome c and will measure the reduction of cytochrome c by O2- as was reported in 
(Ganesana, Erlichman, & Andreescu, 2012). Cytochrome c must be immobilized on self-assembled 
monolayers of mixed thiols to facilitate direct electron transfer upon interaction with O2- (Winterbourn, 
2008; Ge & Lisdat, 2002). For NO, we propose to use permselective membranes and electrodeposited 
Meldola Blue catalysts which we found to selectively interact with NO, thus enhancing sensitivity (Njagi, 
Ball, Best, Wallace, & Andreescu, 2010). NO must be quantified electrochemically at 0.9 V vs. Ag/AgCl. 
Readings will be repeated over time at different periods to provide a longitudinal monitoring profile of 
these species. 

 

Protein Biomarker Sensors 
We propose to design a sensor array with biomolecular recognition using aptamers which consists of four 
sensors: three to analyze a cardiac biomarker: cTn, MYO and CRP; and a control sensor for use in the 



 

tamper-resistance scheme as will be explained later in this chapter. Aptamers for cardiac cTn, MYO and 
CRP are commercially available and will be used in our sensor design. Figure 4 highlights the general 
fabrication procedure and detection mechanism based on redox nanoparticles and aptamer chemistry as an 
example of sensor for Troponin (cTn). Aptamer functionalized screen-printed electrodes with both 
recognition and sensing functions must be used as active sensing components. As previously discovered, 
nanoceria particles can act as redox amplifiers in biorecognition assays and enhance catalytic and 
electrochemical signals allowing us to measure nM concentration of target analytes (Hayat & Andreescu, 
2013). Binding of target functionalized nanoceria to aptamer modified electrodes after exposure to the 
target analyte will induce specific binding and conformational changes of the aptamer through a 
competitive mechanism, which will change the electrochemical properties of the bioelectrode in a 
concentration dependent manner. 

 

Figure 4: Aptamer biosensor fabrication using affinity recognition and redox 
active nanoceria particles as catalytic amplifiers. 
 

 We propose to evaluate the Redox behavior of aptamer binding by measuring the spectral and 
electrochemical properties of unmodified and modified bioelectrodes in the presence and absence of 
cardiac biomarkers using electrochemistry. Redox reactivity studies and the effect of surface coverage 
will be evaluated by electrochemical methods, cyclic voltammetry (CV) and electrochemical impedance 
spectroscopy (EIS). Biomodification of the nanoceria particles with cardiac specific aptamers is expected 
to increase the electron transfer resistance and induce a decrease in the voltammetric response of an 
electrode covered with biofunctionalized nanoceria, in a concentration-dependent manner. The effect of 
the amount of immobilized bioreceptors and biofunctionalized particles, the incubation time and 
specificity of binding, and the electrochemical parameters (e.g. electrolyte, potential) must be established 



 

and optimized. Higher concentration of biomolecules and particle bioconjugates can potentially increase 
the signal, but they can also reduce the sensitivity and increase non-specific recognition. Long incubation 
time will enhance the signal but it will also increase analysis time and decrease sensitivity. Operational 
parameters including concentration of nanoparticles, incubation time and linearity range must be 
optimized. Tests for long-term stability upon storage of the biofunctionalized must also be performed 
using similar procedures. Conventional biochemical ELISA assays must be used for validation of the 
proposed sensor array. Protocols for optimum bioassay design that provides the highest biorecognition 
ability, stability and sensitivity must be determined. At the end of this task, we expect to have bioactive 
sensors with high affinity recognition and detection capability for cardiac biomarkers, and identifying the 
best sensor design for uses in real clinical samples. 

 

BIO-SENSOR CIRCUIT INTERFACE 
The circuit interface to the sensor array design that we proposed in the previous section is 
denoted as "II" in Figure 1 and will be explained in detail in this section. Figure 3 shows the 
response of an example NO sensor which has an optimum operating voltage of 0.35V. A calibration curve 
(i.e., concentration–current curve) is created such as the one shown in Figure 5 for these optimum 
voltages. Therefore, the voltage axis is eliminated in the resulting calibration curve. While the 
measurement of the current response involves applying 0.35V to the sensor and performing a 
straightforward Analog-to-Digital (ADC) conversion on the current, our goal is to embed built-in security 
counter-measures directly into the sensor operation against sensor tampering. So, we will be proposing 
the design of the sensor interface circuitry with tamper-resistance as a top priority. 

 

 

Figure 5: 2D Calibration curve of an NO sensor. 
 

Low Power Sensor Circuit Interface 
The primary goal of the sensor circuit design is measuring the sensor response by using the least amount 
of energy. We envision an inexpensive disposable sensor which operates from a standard CR2032 
Lithium coin battery (CR2032) CR2032 has a 225mAh energy density @3V, corresponding to a 



 

0.225x3x3,600 = 2,790 Joules energy storage capacity. Due to the very low bandwidth of the information 
that needs to be transmitted from the sensor to the concentrator, which aggregates data from multiple 
sensors, if we assume a duty cycle of 1% (i.e., 99% no transmission, and 1% burst transmission), average 
power consumption of the sensing circuitry is 

     (10µA  0.35V  8)  (150µA  3V)

   (60mW  0.01)  1.06mW
avg sensor uC ZigbeeP P P P= + + = × × + ×

+ × ≈
  

(1) 

where Psensor is the power consumption of each sensor circuit (total 8 sensors), PuC is the power 
consumption of an 8 bit microcontroller which is sufficient for this operation with a built-in ADC, and 
PZigbee is the power consumption of Zigbee communication at the activity rate of 1%. This simple back-of-
the-envelope calculation shows that, a CR2032 battery can sustain the sensor circuitry for 2,790/(1.06 x 
10-3 x 3,600) = 731 hours which corresponds to almost a month. We do not envision the remote patient 
monitoring to be longer than this, so, this design with a CR2032 battery is sufficient. However, other 
techniques to reduce the power consumption via more sophisticated communication techniques, which 
can in turn be used for implementing higher security measures, are feasible and is left for future research. 

 Current going through the sensor can be measured by measuring the voltage drop on a sense 
resistor placed in series with the sensor (Hassanalieragh, Soyata, Nadeau, & Sharma, 2014). Sense 
resistor voltage drop can either be directly fed into a an ADC or it has to be amplified prior to conversion, 
by using a current sense amplifier. If the voltage drop is too small, a sense amplifier must be used to 
bring the voltage drop within the range of the ADC. Figure 6 shows a simple circuit for 
sensing/amplifying the sensor current. The circuit portion encompassed in the dashed lines can be 
eliminated if signal amplification is not needed. This is the case when a high-valued sense resistor is used, 
resulting in a large voltage drop such as  ~1V, which can be directly converted by the ADC within the 
microcontroller without loss of conversion accuracy.  

 A high valued sense resistor implies a high power consumption incurred by the sense resistor, 
thereby increasing the power burden of the sensing operation. On the contrary, a small sense resistor 
eliminates excessive power consumption due to the low voltage drop across it (e.g., 20-100 mV), albeit at 
a reduced accuracy of conversion (Gekakis, et al., 2015). For example, if only a 100 mV voltage drop is 
allowed across the sense resistor which is applied to a 12b ADC operating from a voltage references of 
Vref = 1.024 V, full range of 1.024 V means 12 bits of accuracy, while only an 7 or 8 bit accuracy can be 
achieved with a 100 mV sense voltage due to the 10x range reduction. Considering the 1 to 2 bit of built-
in inaccuracy that is inherent in the design of the ADC itself, this only equates ton effective 6 bit overall 
conversion accuracy. The accuracy problem is exacerbated when even a lower voltage drop is allowed in 
the sense resistor, thereby making the use of a current sense amplifier necessary. However, this also 
introduces a power consumption that is incurred by the sense amplifier itself. From a practical standpoint, 
the measurement accuracy is always a much more important consideration than the small amount of 
incremental power consumption incurred by the sense amplifier. A vast array of  commercially-available 
ultra-low power consumption sense amplifiers (e.g., (MAX4372)) make the use of an amplifier the most 
meaningful choice in such a system. 

 As we can see in Figure 3, for the best sensitivity of sensor current to NO concentration,  the 
excitation voltage applied to the sensor must be approximately 350 mV. According to Figure 6, sensor 
voltage is the excitation voltage subtracted by the voltage drop on the sense resistor. For precise 
measurements, we would like to keep the sensor voltage fixed. As the sensor current changes, so does the 



 

voltage drop on the sense resistor. We can achieve fixed sensor voltage goal by two means: 1) Using a 
small enough sense resistor so the variation of sense voltage is negligible compared to the applied 
excitation voltage, and 2) dynamically adjust the excitation voltage based on the measured voltage drop to 
keep the sensor voltage constant. In case of a fixed excitation voltage reference of 350 mV, in order to 
keep the sensor voltage within 5 % of the desired 350 mV voltage, a maximum voltage drop of 18 mV is 
allowed on the sense resistor in full scale. In order to use off-the-shelf ADCs with high resolution data 
conversion, a current sense amplifier with a gain of order of 100 is required to amplify the voltage drop. 
Choosing an appropriate amplifier in data conversion applications which meets the circuit voltage range, 
noise, and bandwidth specifications is a key factor. A complete guide for amplifying circuit design for 
interfacing to data converters can be found in (ADI-ReportADC, 2015). Since in our proposed battery 
based system, low power consumption and operation longevity are key parameters, excessive care must 
be taken when adding an extra component which increases the overall system power consumption. For 
example, MAX4372H (MAX4372) is a low cost, but reasonable precision current sense amplifier, 
demanding a supply current of 30 μA. If operated at 3 volts, it consumes 90 μW which almost adds 10% 
to the pre calculated average power consumption. 

 

 

Figure 6: A simple sense and amplifying circuit for the NO sensor current 
readout. The circuit part included in dashed line can be eliminated when 
using an adjustable excitation voltage and highly enough sense resistor for 
direct measurement of the voltage drop. 
 In our proposed system, a programmable excitation voltage is a more desirable choice, as it 
provides the system with the flexibility of interrogating the sensors within an extended range of excitation 



 

voltages, which will increase the system's security against possible sensor tampering, as will be explained 
shortly in our Challenge-based Sensing section. PIC16F1783  (PIC16F1783) which is an 8-bit low power 
microcontroller with an integrated ADC (Analog-to-Digital Converter) and DAC (Digital-to-Analog 
Converter), which completely suits our application. An internal 12 bit differential ADC with a 
programmable reference voltage can be used for direct measurement of the sense voltage. The integrated 
DAC in the microcontroller can be used to generate the variable excitation voltage.   

 Sense resistor value can easily be calculated according to the ADC full scale voltage and the NO 
sensor current. As we can see in Figure 3, at the excitation voltage 350 mV, maximum sensor current is 
approximately 0.45 nA. So if the ADC full scale voltage is 1024 mV, a sense resistor smaller than 2.28 
𝑀Ω should be used. However in order to keep sensor voltage at 360 mV,  the applied excitation voltage 
has to vary in the range 350 mV -  1384 mV.  

 

Incorporating Tamper-Resistance into the Sensor and Sensing Circuitry 

To ensure tamper-resistance within the sensor array against different tampering scenarios, we 
propose two ideas during the sensing operation: 1) Through the addition of a fourth blank sensor, 
and 2) by interrogating the sensors at different multiple redundant voltages. Both of these 
scenarios imply redundant work to achieve sensing privacy. In the proposed medical data 
acquisition system, the benefits of privacy are clear and the additional power consumption 
incurred by these techniques through redundant sensing and redundant computations are more 
than justifiable. We will now explain our tamper-resistance ideas in detail below. 

 

Control Sensor to Detect Relocation Tampering 
The first idea is the addition of a fourth sensor (control sensor) to each sensor array, in addition to the 
three other sensors, each sensing a specific biomarker. We hypothesize that, the addition of this fourth 
sensor can facilitate the bio-identification of the patient that is being monitored. This will allow the 
detection of a simple placement of the sensor to another person. We define this as relocation tampering. 
Although this is the simplest form of tampering, its ability to fool the system is surprisingly high. This is a 
highly likely scenario when an involuntary (or even voluntary) placement of a sensor to another person 
happens during the remote monitoring period.  

 Tamper-resistance will be ensured by challenging and interrogating the sensor with a key value 
obtained from the bioprint which is derived from the combination of three biosensors and control sensors 
(for each panel in Figure 1), which is specific to the monitored patient. Furthermore, since the biosensors 
provide a comprehensive multimodal panel that will monitor the evolution of cardiac markers over time 
against the initial time (e.g. time zero stored in the doctor’s office); we hypothesize that each individual 
will be characterized by a unique cardiac fingerprint much like a biometric fingerprint that is person-
specific. The self-reference sensor will act as a blank electrode that will provide an individualized value -
as a unique background current– characteristic to the biofluid sample of each individual (e.g. blood). 
Variability in these values among different individuals will be established experimentally. 

Challenge Based Sensing to Avoid Replacement Tampering 



 

The second tamper resistance approach we propose deals with breaches through the replacement of  the 
healthy sensors with fake ones. We define this as replacement tampering. Our proposed challenge-based 
sensing to detect sensor-tampering is inspired by the following concepts: i) US Department of Homeland 
Security reports trusted cyber future as a visionary goal for the next few decades (DHS-Goals, 2015), 
where security is built directly into non-invasive screening devices. ii) Non-invasive tampering on anti-
lock braking systems (ABS) in a car could cause the car to crash by making the ABS system think that the 
car is travelling slower than it actually is  (Shoukry, Martin, Tabuada, & Srivastava, 2013). This can be 
achieved by a surprisingly simple tampering, where a thin electromagnetic actuator is placed near the 
ABS wheel sensors and the resulting electro-magnetic interference alters speed measurements.  
 As reported by the authors (Shoukry, Martin, Tabuada, & Srivastava, 2013), operating knowledge 
of the sensors is required against such an attack, which is used to challenge the sensory data. In our 
proposed remote health monitoring system, each sensor will have an electronically stored calibration 
curve at the potential characteristic of the electrochemical process of the electrode surface; purposely, a 
second calibration curve (or a few more), at a different potential range will also be recorded and stored to 
allow replacement-tamper-resistance. The purpose of these additional calibration curves is to create 
multiple other operating points, even if not efficient, with the intention to use them for challenging the 
sensor. 

 Although additional challenges for the sensor correspond to additional measurements, from 
Equation 1 we observe that, this introduces a negligible additional system power consumption. Especially 
since the results are being transmitted in a burst, additional challenges (i.e., redundant measurements at 
multiple sub-optimum operating points) do not create a noticeable communication overhead either. For 
example, assuming 10 redundant measurements for each actual measurement, the increase in Psensor and 
PuC is negligible, since we already assumed 100% activity for these two components. Assuming that the 
increase in the Zigbee activity (PZigbee) is 50% (not more, since the amount of data is very low), this only 
reduces the battery life to 570 hours (23 days) from the original 30 days. Different challenge scenarios 
and optimum challenge vs. energy consumption trade-offs are possible and they are left for future 
research topics.  

 

Robust Sensing 
Validity of a patient’s sensed biomedical information is highly dependent on two major factors: First, the 
precision of the sensor measurement which is limited by the ADC quantization noise and the 
amplification/sensing circuitry noise. Second, the robustness of the mapping of the measured sensor 
response to the patient’s biomedical information in the presence of general noise and variations in 
conditions such as temperature and the excitation voltage. Limited storage capacity on the 
sensing/mapping device requires applying robust methods to extract a patient’s biomedical information 
with a minimum amount of stored data.  

 On the circuit side, apart from using low noise elements, efficient techniques can be applied to 
reduce noise levels based on the low frequency nature of measurements. Commercial off-the-shelf ADCs 
are able to achieve a sampling rate of the order kilo samples per second. Since measuring patient’s 
biomedical information is carried out at a much lower frequency, over-sampling based techniques can be 
employed to improve the signal-to-noise ratio while keeping the number of bits in the ADC samples 
constant. According to Figure 3, there is a one-to-one mapping between the sensor current and the 



 

biomarker concentration at a given applied excitation voltage. However, due to the presence of noise and 
limited accuracy of stored data, a single measurement may not be sufficient to describe the sensor 
response accurately. Measuring the sensor response at different excitation voltage levels and using a 
systematic approach such as Kalman filtering (Sorenson, 1970) to combine measurement results can lead 
to more robust and accurate mappings. Kalman filtering has been extensively used for robust estimations 
of unobservable variables in a variety of fields (Nadeau, Sharma, & Soyata, 2014) including medical 
science. For example in (Li, Mark, & Clifford, 2008), a Kalman filtering approach has been introduced 
for robust heart beat estimations from multiple asynchronous noisy sources.  

 

INTERNET-OF-THINGS BASED SENSORY ARCHITECTURE 
Development of cloudlet and concentrator design are two key components in Internet of Things (IoT)-
based sensory architecture. This section overviews these two key enablers towards IoT-integration of the 
proposed system, which is indicated as "III" in Figure 1. 

 
 
 

Cloudlet Design 
Cloudlet is a limited-resource local computing and storage platform that eliminates outsourcing certain 
resource-intensive tasks to the enterprise cloud (Hoang, Niyato, & Wang, 2012; Jararweh, Tabalweh, 
Ababneh, & Dosari, 2013; Li & Wang, 2013; Soyata T. , et al., 2012). Cloudlet computing is a strong 
candidate for health monitoring applications via body area networks as it reduces the delay of accessing 
the enterprise cloud (Quwaider & Jararweh, 2013). Furthermore, user privacy can be substantially 
improved by Map-Reduce based watermarking running on a cloudlet system.  

 Our proposed cloudlet design adopts the Kimberly architecture which delivers VM overlays to 
the mobile clients in order to utilize a dedicated VM in the cloudlet (Satyanarayanan, Bahl, Caceres, & 
Davies, 2009). In order to perform virtualization, Oracle VM VirtualBox must be installed in the cloudlet 
server. VM overlay sizes must be determined empirically, however, given that the full VM image can go 
up to a few gigabytes, VM overlay sizes must be configured to be some hundred megabytes. On the 
cloudlet server, we propose to implement a pseudo-distributed single node Hadoop cluster in order to run 
time critical analysis of sensed data. The reason behind adopting Kimberly architecture is that the cloudlet 
is self-manageable and flexible for the developer. On the other hand, the downside is the overlong VM 
synthesis (60-90 seconds). VM overlay prefetching mechanism must be applied along with parallel 
compression/decompression in order to reduce the VM synthesis delay. Nevertheless, we propose a 
holistic and interoperable cardiac monitoring system. Therefore once it is validated, this conceptual model 
can be implemented on other cloudlet architectures as well such as the Clonecloud (Chun, Ihm, Maniatis, 
Naik, & Patti, 2011) or Mobile Assistance Using Infrastructure (MAUI) (Cuervo, et al., 2010). 

 

Concentrator Design 
With the advent of sensing based applications, billions of uniquely-identifiable embedded devices are 
expected to be interconnected in the Internet of Things (IoT) architecture (Aggarwal, Ashish, & Sheth, 



 

2013), in which a concentrator acts as a communication gateway for the sensors and connects each sensor 
to the Internet (Vazquez & Ipina, 2008). Connecting sensors to the internet involves collecting sensed 
data, as well as interpretation of the data locally or at a remote host. These steps can be achieved in a cost 
efficient and scalable manner if cloud computing is integrated into the IoT architecture (Gubbi, Buyya, 
Marusic, & Palaniswami, 2013). Remote healthcare monitoring is reported to be an application domain 
that can benefit from cloud-IoT integration (Doukas & Maglogiannis, 2012). The sensory network 
infrastructure that we propose departs from this vision as shown in Figure 1 by treating the bio-sensor 
array as a form of an IoT infrastructure, where the HCO datacenter is a private cloud, and the cloudlet in 
the patient’s house is a concentrator (either the patient’s smartphone, or a dedicated cloudlet as in (Soyata 
T. , Muraleedharan, Funai, Kwon, & Heinzelman, 2012)). 

 Smartphones of the patient and/or the attendants can offer ideal platforms to replace the 
concentrators in the Internet of Things (IoT) infrastructure as current smart phones can use both LTE and 
WiFi as the backhaul network. Aggregation tasks can be handled either in a local cloudlet or in the 
HCO’s datacenter. We propose context-aware concentration of the data in the cloudlet (i.e., via WiFi 
connectivity) or in the HCO datacenter (i.e., via LTE connectivity). The former leads to one tenth of the 
latter’s access delay, half the power of the latter’s power consumption and ten times the latter’s 
throughput (Jararweh, Tabalweh, Ababneh, & Dosari, 2013; Wang, Liu, & Soyata, 2014). The tasks on 
the aggregated data will be partitioned between the cloudlet and the data center, however this research 
proposes context-aware partitioning of the data between these two entities. Context must be defined as a 
function of the current and expected status of the patient, whereas this decision making system will be 
implemented as an integrated component of the concentrator. Learning automata-based concentration is 
expected to address (i.e., adapt) the trade-off between computation and performance subject to the 
context, i.e., environmental dynamics (Soyata, Friedman, & Mulligan, 1997). In order to ensure fast 
convergence and efficiency, the concentrator will adopt the estimator algorithms applied to learning 
automata (Oommen, 2010). 

 Concentrator can be implemented as a mobile application in the mobile sensing environment. 
Android Software Development Kit (SDK) can be used to build the mobile application. The mobile 
application will be communicating with the sensory circuit through WiFi module of the mobile device 
and temporarily store and aggregate the sensed data based on context-aware burstification. The 
application will transmit the burstification through either cellular or WiFi module of the mobile device 
based on the time criticality metric which is denoted by the context. Communication via WiFi module 
will enable starting VM synthesis function in the cloudlet. 

 

Reliable and Secure Sensing Algorithms 
Sensing is proposed as a cloud-based service (Lauro, Lucarelli, & Montella, 2012; Rao, Saluia, Sharma, 
Mittal, & Sharma, 2012; Sheng, Tang, Xiao, & Xue, 2013), while trustworthy sensing has been studied in 
the context of sensor reputation-awareness and accurate sensing (Kazemi, Shahabi, & Chen, 2013; 
Shahabi, 2013), user privacy and data integrity (Gilbert, Cox, Jung, & Wetherall, 2010). Kantarci and 
Mouftah have proposed a trustworthy sensing-as-a-service architecture (Kantarci & Mouftah, 2014; 
Kantarci & Mouftah, 2014) for a public safety application, presenting a framework to ensure 
trustworthiness of the sensed data. In their proposal, sensors are recruited based on their reputation, which 
is defined as the percentage of correct readings after eliminating the outliers through the algorithm in 



 

(Zhang, Meratnia, & Havinga, 2010) and adopting a Wilson score to increase the confidence of reputation 
calculation (Carullo, et al., 2013). Most of these ideas will be applied to the proposed system.  

 Trust-based data aggregation methods for wireless sensor networks (WSNs) have been studied in 
the literature however, most of these studies address sensing data accuracy (Sun, Luo, & Das, 2012) or 
detect threats on individually compromised nodes (Zhang, Das, & Liu, 2006). In our proposed system, 
multiple sensors are deployed in the same region and mostly in the same transmission range. This 
introduces resiliency issues to the sensory system where the entire sensor network can fail requiring 
prompt intervention. As the collected data from the sensory system is expected to be correlated with any 
other indicator of cardiac status, this research aims at integrating off-the-shelf heart monitoring systems 
(Agu, et al., 2013) into the proposed sensory system, and detect anomalies in the biosensor signals 
through correlation analysis. 

 

COMMUNICATIONS ARCHITECTURE 
As shown in Figure 1, our proposed system which consists of the data acquisition, data aggregation, and 
application layers. The data acquisition layer consists of the sensory circuit, the concentrator and the 
cloudlet. The concentrator can be implemented within a smart phone in the vicinity of the patient and the 
cloudlet can be implemented by a computer accessible via WiFi or a smartphone. Sensory circuit 
communicates with the concentrator via a IEEE 802.15.4 (Zigbee) interface as Zigbee provides low 
power, low cost communication in a short range. Concentrator should also use Zigbee to avoid depleting 
the battery power due to WiFi or LTE access (Olteanu, Oprina, Tapus, & Zeisberg, 2013; Kwon M. , 
2015). The concentrator is also equipped with a WiFi interface to communicate with the cloudlet and an 
LTE interface to communicate with the Cloud via a mobile backhaul (Kwon, et al., 2014). Visualized data 
represented to the Application layer via WAN over the Internet backbone and the mobile backhaul as the 
doctor will be able to access the visualized data via his/her smart phone anytime and anywhere. The 
challenges and novel solutions for the communication infrastructure of the proposed architecture are as 
follows: 

 Urgent data aggregation tasks are handled in the cloudlet (Powers, Alling, Gyampoh-Vidogah, & 
Soyata, 2014). Besides designing specific cloudlet functions, this research aims at generalizing and 
standardizing cloudlet operation for medical data acquisition. Building blocks for cloudlet design are 
virtualization, standardized signaling mechanisms for admission control, resource allocation, quality of 
service provisioning for associated mobile devices, and resiliency of the cloudlet including security and 
privacy concerns. Virtualization is the most straightforward block as it will be achieved by a hypervisor 
implementation. The novelty of the proposed system lies on the blocks above virtualization, all of which 
will be designed with abstract interfaces so that any application (e.g., telemedicine, military, traffic) can 
request admission to the cloudlet by implementing the appropriate interface. Based on the requirements of 
the application, resources will be allocated by considering QoS metrics and encapsulated with security 
and privacy services. 

 Contemporary sensing systems offer integrated solutions that incorporate individual sensor design 
with the aggregation system. However, near-commodity acquisition system is only software, whereas the 
intellectual property of the telecommunication companies is embedded into the sensor design. In this 
chapter, we propose to decouple the acquisition software from the sensor design via a novel interoperable 
sensor data transmission mechanism. The interoperability mechanism will enable each party to be 



 

interfaced through the proposed wireless sensing platform by adopting existing IEEE 1451  and ISO IEEE 
11073 standards. IEEE 1451 standardizes the communication interface between sensors and micro-
controllers and/or control networks whereas ISO IEEE 11073 defines communication standards between 
the healthcare devices and external computing resources. Our proposed system will adopt these standards 
and extend them towards a tamper-resistant interoperable wireless sensing platform. 

 Although personally-identifiable information will be removed before communicating sensed data, 
aggregate disclosure attacks aim at deducing information through pattern recognition methods (Abbas & 
Khan, 2014; Gkoulalas-Divannis, Loukides, & Sun, 2014; Alling, Powers, & Soyata, 2015). Novel 
algorithms must be developed to hide sensitive sequential patterns in the aggregated cardiac data. We 
envision the overall sensory system to be tamper-resistant, however, context-awareness may introduce 
privacy vulnerabilities under aggregate disclosure attacks by allowing the intruder to infer information 
regarding the health condition of the monitored patient based on concentrator-to-mobile-backhaul 
network traffic patterns even if the patient identity is not revealed. Random linear network coding along 
with lightweight homomorphic encryption has been shown to be efficient to overcome malicious 
adversities via network analysis in multi-hop wireless networks (Fan, Zhu, Chen, & Shen, 2011), 
although fully homomorphic encryption is too slow for practical use (Kocabas & Soyata, 2014; Kocabas, 
et al., 2013; Page, Kocabas, Soyata, Aktas, & Couderc, 2014; Page, Kocabas, Ames, 
Venkitasubramaniam, & Soyata, 2014). We propose to adopt existing approaches (Fan, Zhu, Chen, & 
Shen, 2011), but to unwrap network coding from lightweight homomorphic encryption. The concentrator 
will be designed to employ a network coding-inspired approach to assign data aggregation tasks to the 
cloudlet and the HCO datacenter, thereby achieving resistance to aggregated disclosure attacks. 

VISUALIZATION OF THE ACQUIRED SENSORY DATA 
The previous section discussed secure methods for uploading medical sensor data to the healthcare 
provider.  We will now explain a procedure for cleaning up the raw data and presenting it to the doctor.  
This is the part of our proposed system in Figure 1, which is denoted as "IV." Currently, doctors will 
review snapshots of results that may overly-simplify the true situation, or otherwise miss vital pieces of 
the full picture.  For example, with ECG, a cardiologist may never see what happens to your heart rate 
during sleep, because he only checks it while you’re present during clinic hours.  With 24-hour 
monitoring data, we can look at these periods.  However, we still need to greatly compress the 
information so that the doctor can read a summary in a few seconds; we cannot give him a list of the 
patient’s heart rate for all of yesterday’s 100,000 heart beats, for example, nor should we simply average 
them to produce a single number.  Visualization techniques must be developed that can quickly present 
long-term data while preserving all important information and revealing problems that conventional 
techniques would have missed.  This will require massive computation and filtering in the cloud, and 
experimentation to determine the most useful way to display the results.  We now present a case study to 
illuminate this process. 

 

Background / Case Study 
One application that can greatly benefit from long-term monitoring is diagnosis of the Long QT 
Syndrome (LQTS).  This is a disorder that may be drug induced or genetic, and is easy to detect from an 
ECG signal.  Figure 7 illustrates the relevant intervals on an ECG.  As the QT interval becomes more 



 

prolonged relative to the RR interval, risk of potentially-fatal arrhythmias such as torsades de pointes 
(TdP) is greatly increased  (Shah, 2004).  To evaluate this risk, the QT and RR intervals are typically 
merged into a single variable, QTc, which is the corrected QT based on RR.  Two typical correction 
equations are: 

 
/ sec

QTQTcB
RR

=   

and 

 
3 / sec

QTQTcF
RR

=   

where the ‘B’ and ‘F’ indicate that these are the Bazett (Bazett, 1920) and Fridericia (Fridericia, 1920) 
corrections, and the division by 1 second is to preserve the units of QT.  There are gender-dependent 
thresholds above which a patient’s QTc is considered dangerous.  While there is no universal standard for 
these thresholds, they are generally around 450ms-470ms. When evaluating a patient’s QTc, a 
cardiologist will usually review a 10-second ECG snapshot, or possibly a single daily average. 

 The genetic mutations that can cause LQTS are denoted LQT1, LQT2, … LQT13 (Hedley, et al., 
2009).  LQT2 and LQT3 tend to cause more problems at night (Stramba-Badiale, et al., 2000), when the 
heart rate is low (i.e. when RR is high), meaning that the single average QTc value reviewed by the doctor 
is unlikely to show the full scope of a patient’s LQTS.  When a subject has periods of prolonged QT that 
are not always present, we say that they have concealed LQTS.  Additionally, certain prescription drugs 
can prolong QT in ways that may not be fully characterized during clinical tests, resulting in more 
prolongation when the patient goes home than the doctor was able to predict from in-hospital monitoring.  
To better detect and treat patients in these situations, we envision a long-term remote-monitoring system 
that can upload ECG signals to the healthcare provider for automated analysis of QTc.  Ideally, this 
system will provide a 24-hour picture to the doctor in a simple form containing all key information; i.e. 
we want to summarize, while avoiding under-sampling or over-averaging of the data. 

 



 

 

Figure 7: Typical ECG trace, with QT and RR intervals labeled.  (Image 
based on SinusRhythmLabels.png by Anthony Atkielski.) 
 

Components 
The process we have just introduced requires several stages.  First, sensor data must be collected and 
stored in a standardized way. Existing standards may be very different across technologies, so another 
standardization layer may be necessary to simplify access to heterogeneous sensor data.  Once the data is 
organized for easy access, we need to know what features a doctor will be interested in.  Heart rate, for 
example, is very likely to be of interest. Some ECG sensors may output this directly, but they may simply 
annotate where each beat occurred, or give RR rather than heart rate.  Or, in the worst case, they may only 
give us amplitude (voltage) vs. time.  In all of the latter cases, calculations are required to get the heart 
rate, and the cloud and/or cloudlet should therefore immediately start computing and storing it for rapid 
retrieval.  Other features (such as the PR interval) may not be as useful, so we may choose only to 
compute them on demand rather than wasting time and storage up front. 

 To collect ECG data over 24 hours or more, the standard method is a Holter monitor (Holter, 
1961). A Holter monitor is a portable ECG device that records data for later retrieval and review, usually 
on 2-3 separate sensors (which are typically referred to as leads).  Many other portable ECG devices are 
now available, such as the AliveCor Heart Monitor (AliveCor, 2014) and the Clearbridge VitalSigns 
CardioLeaf (CardioLeaf, 2013). These devices take care of the data collection and upload portions of our 
system. However, for this proof of concept, we will simply download Holter recordings from the THEW 
database (Couderc, 2010). One of the main advantages to this approach is the availability of ECG 
recordings from known LQTS patients, which allows us to test our analysis and visualization processes 
on relevant data. 

 From the raw ECG data (in ISHNE format (Badilini, 1998)), we must build a hierarchical 
database that has the original data at its lowest layer, commonly-requested features such as heart rate at 



 

the highest layer, and primitives such as  “R peak locations” in between.  This structure allows us to 
generate results more quickly than building them from the raw data on every request, and it also allows us 
to standardize the interface to clinically-relevant features at the highest layers when dealing with different 
types of sensors.  We construct the database for our LQTS application in two major steps: 

1. ISHNE-formatted ECG recordings are converted to annotations of every feature in the recording; 
these annotations include the lead, location, and amplitude for features such as Q, R, and S in 
every heartbeat.  These are the ‘primitives’ mentioned above; from them, we should be able to 
calculate almost any result without returning to the original data.  This annotation is performed by 
an open-source C++ library (Chesnokov, Nerukh, & Glen, 2006). The results for each recording 
are then stored in a SQLite (SQLite, 2015) database corresponding to that recording.  In the long 
term, a different database system such as MySQL (MySQL, 2015) or MariaDB (MariaDB, 2015) 
will likely be a better solution, but for now, SQLite simplifies portability across our test systems. 

2. From the primitives computed in step 1, we can now compute the values of interest such as QT 
and heart rate.  Although these computations are relatively simple – e.g. subtracting Q from T – 
there are ~100,000 heart beats per patient per day, detected on 3 separate leads.  This begins to 
add up to a lot of computation if we wait until the doctor asks for it.  Further, if we want to 
aggregate results, perhaps to see the average heart rate for a group of 1000 people, we are much 
better off having pre-computed it across each recording.  So this step will save a lot of time for 
future queries.  These results are stored in a separate table in the SQLite database associated with 
each recording. 

While building this database, we can take advantage of redundant ECG sensors to clean things up a bit.  If 
‘R’ was detected on 3 different leads in the original recording, for example, we may use the median R 
value to calculate RR.  Or, we may choose to average each value across all leads, weighed by their signal 
quality.  In this way, we can keep the higher layers of the database leaner and more accurate. 

 The final component in the overall system is the “frontend” part, which will use the database to 
generate tables and plots.  We perform the computation and plotting for this final stage mainly using 
NumPy (NumPy, 2015) and matplotlib (matplotlib, 2015). The details are discussed in the following 
section. 

 

Output / Filtering 
One useful result that can be drawn from the database we’ve constructed is a view of the typical range for 
a given feature over 24 hours – either for a single patient, or the average for a population.  For example, 
we may want to see how much heart rate decreases at night compared to during the day, and also how its 
variability changes.  One way to visualize this is with a plot of heart rate vs. time, as seen in Figure 8. 

 



 

 

Figure 8: Median heart rate (beats per minute) in healthy subjects, male vs. 
female.  Error bars indicate standard deviation, and are drawn in only one 
direction to avoid overlap.  RR is in beats per minute, and hours are 
indexed from midnight.  Results generated from THEW E-HOL-03-0202-
003 database. 
 

While this format is instructive, we have found that conventional Cartesian plots are somewhat 
cumbersome to interpret due to the discontinuities at the endpoints and the inconsistent or inconvenient 
placement of the origin in terms of time-of-day.  Plots of 24-hour data are much more intuitive on polar 
axes, once the viewer becomes accustomed to this style.  In polar coordinates, we use the angle to indicate 
time of day and the radius to indicate the value of a feature (such as QTc).  We have also found that it is 
best to maintain fixed axes ranges for any particular feature, e.g. 300ms-600ms for QTc, so that the 
viewer doesn’t need to adjust to a new scale for each plot.  Some examples of this technique are given in 
Figure 9, Figure 10, and Figure 11. 

 



 

 

Figure 9: Visualizing the typical range of values for a feature.  These 3 plots 
are for QTcB in LQT1 female subjects who are not on beta blockers.  Left: 
histogram of QTcB for all heart beats, with white circles at radii of 470ms 
and 500ms (“warning” and “danger” for females).  Center: median QTcB +/- 
1 standard deviation.  Right: median QTcB +/- median absolute deviation.  
Results generated from THEW E-HOL-03-0480-013 database. 
 In the histogram in Figure 9, we have plotted QTcB for every heartbeat from 94 24-hour 
recordings –approximately 10 million data points in total.  We then produce a similar plot showing points 
within 1 standard deviation of the median as a solid color.  Median is used rather than mean because we 
expect to have a non-negligible number of erroneous values in our data set due to the noisy environment 
and imperfect annotation algorithm, and we want to avoid giving weight to these bad values.  However, 
these outliers still affect the standard deviation; the width of the band in the center plot is a result of this.  
Further, the standard deviation across multiple patients gives a false sense of how much variability is 
really normal for a single patient.  To get a more representative view of QTcB, we produce the same plot 
using median absolute deviation (MAD) instead of standard deviation.  This results in the final plot in 
Figure 9. 

 Next, we would like to look at a single patient’s QTc, and compare it to their peers (or to a 
healthy population).  The first plot in Figure 10 illustrates the effects of noise when we attempt to simply 
view QTcB vs. time on one of our “clock” plots.  Noise is not washed out like it was in the histogram; a 
line is being drawn to every outlier, and even relatively small error rates can produce a few thousand 
outliers over the course of a day (which consists of ~100,000 heart beats).  This is amplified by the fact 
that a single faulty detection can result in two incorrect values; with heart rate, for example, wrongly 
detecting an extra heart beat would make the heart rate appear to jump up for 2 beats and then return to 
normal.  Further, QTc is somewhat dynamic; much of its variation isn’t “noise,” it’s real.  To smooth the 
plot, we apply a median filter to the list of QTc values, replacing each point with the median of the points 
around it.  The impact of this filtering process is shown in the remaining plots in Figure 10.  This 
approach will cause problems, though, if the doctor is interested in short-duration events; events that 
occur for less than ~5 minutes, for example, are likely to be removed by the filter.  The best solution for 
this is to collect a cleaner signal (e.g. using better sensors) and to apply more advanced annotation 
techniques.  It is also important to eliminate errors at each stage in the database construction.  Because 
there are so many data points to work with, it is generally safe to discard all questionable values.  



 

Relatively wide filters do not cause a problem for the QTc case study, but physicians will need to select 
filtering windows that make sense for their application. 

 

 

Figure 10: QTcB extracted from Holter recording of a 32yo female LQT1 
patient.  Left: unfiltered.  Center: sliding window median filter, width = 2 
minutes.  Right: sliding window median filter, width = 20 minutes.  Green 
background: typical range for healthy female subjects.  Turquoise 
background: typical range for female LQT1 subjects.  The ‘notch’ around 4-
5PM was not recorded. 
 

At this point, we have accomplished the main goal of our case study: to present 24 hours of QTc 
information to the doctor in a concise and useful form.  One of the intended applications for this tool was 
detection of concealed LQTS.  As we mentioned earlier, doctors normally only check a patient’s QTc for 
a few seconds during the day, or as an average value over a longer period of time.  Figure 11 shows two 
cases where current methods would fail to reveal the full extent of a patient’s QT prolongation, but our 
“QTc clock” reveals it immediately.  The plots in this figure only take a few seconds for the doctor to 
review, which is important for a physician who may have 20 or more patients to check on each day, and 
who will likely want to review other features (e.g. heart rate) as well. 

 



 

 

Figure 11: QTc in LQT2 patients exhibiting LQTS concealment during the 
day.  Left: 1yo female, not on beta blockers.  Right: 38yo male on beta 
blockers.  Green background: typical range for healthy individuals of same 
gender.  Turquoise background: typical range for patients with same 
gender and LQT genotype.  Note that the nocturnal QTc of these patients 
would not be seen during clinic hours.  Further note that some nighttime 
QTc prolongation in these populations is normal, as shown by the 
asymmetry of the turquoise bands. 
 

Implications and Future Research Directions 
We have shown that doctors can use the QTc clocks to detect concealed LQTS, but these plots have many 
other uses as well.  They can reveal whether a patient is taking certain prescriptions correctly or not, if a 
prescription should be adjusted, or even what dose is likely to be safe for someone being started on a new 
drug.  Further, the database we’ve developed can be used for purposes other than visualization, such as 
decision support.  The increased availability of sensor data from a wide variety of patients will yield very 
refined characterizations of specific groups, differentiated by genetic mutation types, drug use, age, etc., 
allowing software to make diagnosis recommendations and even to predict the effects a prescription 
would have on a certain patient.  Finally, we remind the reader that long-term QTc monitoring is only one 
example of a medical data visualization problem.  The same techniques we’ve presented can immediately 
be extended to other features (such as heart rate) and other sensors (such as glucose monitors).  Without 
these tools, the increasing volume of sensor data will become overwhelming to the clinicians who need to 
process it. 

 

 



 

CONCLUSIONS AND FUTURE WORK 
In this chapter, we proposed a real-time remote patient monitoring system for cardiac conditions. Such a 
system does not exist in today's technology both in terms of the difficulty in standardizing data 
acquisition formats and systems, and the strict regulations governing the medical arena. The design of 
such a system has the potential to revolutionize the patient care since it can provide real-time data to 
health professionals in a summarized format. While the design of the individual components of such a 
system is feasible in today's technology, integration of these individual pieces requires a lot more effort to 
result in a practical system. In this chapter we described the components that we deem necessary in detail. 

 First component we described is a set of novel biosensors that can detect non-trivial biomarkers 
related to the diagnosis of deadly cardiac conditions. We analyzed the detection of these biomarkers in 
two distinct categories: the i) Protein and ii) Oxidative Stress panels. In the protein panel (i), we detailed 
the design of a biosensor array for detecting such biomarkers as Cardiac Troponin (cTn), C-reactive 
protein (CRP), and Myoglobin (MYO). In the Oxidative Stress panel (ii), we described the design of a 
second biosensor array capable of measuring Cholesterol(Ch), superoxide radicals (O2-) and nitric oxide 
(NO) levels.  

 The second component we described is a custom sensor-interface circuitry which interfaces with 
these two biosensor arrays and reports the measurement results to the communication infrastructure using 
the low-power Zigbee communication protocol. As a crucial part of the circuit design, we described how 
to take advantage of the knowledge of the electrochemical properties of the six biosensors to achieve 
tamper-resistance. We introduced two separate methods for achieving tamper-resistance: i) by adding a 
blank control electrode to each panel in both sensor arrays, thereby increasing the total number of sensors 
to eight in the entire system. The addition of the control sensors can facilitate the establishment of 
individualized bioprints for each patient, thereby enabling the identification of our first conceptualized 
tamper scenario which we defined as relocation tampering. ii) by performing redundant measurements 
during the sensing process for the purpose of identifying the validity of the results to these additional 
measurements. This will enable the detection of the second kind of tampering which we defined as 
replacement tampering, in which a sensor is placed with a fake one by an adversary. Since the adversary 
will not be able to answer the additional measurements (which we called challenges) correctly, we can 
detect the breach and ignore even the correct results. 

 The third component we described is the communication architecture which is composed of an 
Internet-of-Things (IoT)-like sensor array, followed by a concentrator to collect and accumulate the 
results from multiple sensors. Within this communication infrastructure we described the functionality of 
a cloudlet, which is a device that is capable of performing non-trivial computations at the site of data 
acquisition. We proposed to utilize the cloudlet to perform sensor interrogations controlled by the 
algorithms that are stored in the cloud. The final destination of the acquired data, after being aggregated 
by the concentrator and verified by the cloudlet is the HCO's datacenter, which can be considered to be a 
private cloud. This proposed communication architecture places the application intelligence inside the 
cloud, based on our conceptualization that, the most privacy-vulnerable of this system is the least 
computationally-capable portion of it, which is the sensory acquisition IoT network. Therefore, our 
proposed system can achieve arbitrarily high levels of privacy, constrained only by the capabilities of the 
sensory network. In other words, the development of an ever-increasing set of sophisticated cloud-
cloudlet-concentrator algorithms is possible with an increasing number of software-knobs provided by the 
sensory network. 

 The final components of our system is the visualization of the acquired data once it is stored in 
the private cloud. We proposed novel methodologies for visualizing long-term monitoring results which 
permits a doctor to visualize data for multiple patients within seconds. An example of QTc (corrected QT) 
monitoring over a 24 hour period is described where, by using intuitive colored bands, a doctor can 
immediately see abnormal cardiac functionality. Future research includes the visualization using the same 



 

scheme, albeit with an increased number of co-plotted biomarkers. While the visualization of a single 
biomarker (QTc) provided a very intuitive way to monitor patient health, adding an increasing number of 
biomarkers to the same plot (e.g., Cholesterol, Troponin) will require further investigation. We believe 
that, the proposed system in this chapter has the potential to revolutionize the healthcare of the 21st 
century. 
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