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Abstract—Widespread use of connected smart devices that
are equipped with various built-in sensors has introduced the
mobile crowdsensing concept to the IoT-driven information and
communication applications. Mobile crowdsensing requires im-
plicit collaboration between the crowdsourcer/recruiter platforms
and users. Additionally, users need to be incentivized by the
crowdsensing platform because each party aims to maximize
their utility. Due to the participatory nature of data collection,
trustworthiness and truthfulness pose a grand challenge in
crowdsensing systems in the presence of malicious users, who
either aim to manipulate sensed data or collaborate unfaithfully
with the motivation of maximizing their income. In this paper,
we propose a game-theoretic approach for trustworthiness-driven
user recruitment in mobile crowdsensing systems that consists
of three phases: i) user recruitment, ii) collaborative decision
making on trust scores, and iii) badge rewarding. Our proposed
framework incentivizes the users through a sub-game perfect
equilibrium (SPE) and gamification techniques. Through simu-
lations, we show that the platform and user utilities, defined in
terms of costs and revenues, can be improved respectively by
up to the order of 50% and of at least 15% when compared to
fully-distributed and user-centric trustworthy crowdsensing.

Index Terms—Crowdsensing, gamification, subgame perfect
equilibrium (SPE), reputation systems, user incentives

I. INTRODUCTION

Mobile crowdsensing (MCS) has become an emerging
paradigm for large-scale distributed sensing that requires an
implicit collaboration between crowdsensing platforms and
participants who provide sensed data as a service via smart
mobile devices [1]. Smart mobile devices like smartphones,
tablets and wearables are equipped with various built-in
sensors, including GPS, camera, accelerometer, gyroscope
and microphone among others; they have the potential for
continuous environmental monitoring of air pollution, water
quality, road condition for smart transportation, public safety
and emergency preparedness [1], [2]. As the popularity and
widespread use of these devices are continuously increasing,
they appear to be the best candidates for being integrated to
IoT-driven sensing applications. Performance of MCS platforms
depends on the number of participants contributing to complete
sensing tasks, making user recruitment a key challenge in MCS

through proper incentivization [3], [4]. Proper recruitment
policies allow the selection of users that are able to fulfill
sensing tasks with high accuracy while minimizing system
costs. On one hand, the central platform organizes and assigns
tasks, thus sustaining a monetary cost to recruit and reward
users for their contribution. On the other hand, users sustain
costs for their contributions in terms of energy consumed for
sensing and data subscription plan use for reporting. Several
incentive strategies have been proposed in the literature with
the aim of addressing the trade-off between platform and user
utility [5].

Gamification is a common method to foster users collabo-
ration [6] and it is a widely adopted technique nowadays [7].
Popular social platforms such as Foursquare, Twitter and Stack
Overflow are well-known examples of platforms applying
gamification in real environment. In gamified incentive methods,
users receive badges as awards. These virtual rewards are
meant to provide a sense of accomplishment in the users and
to motivate them to participate actively and continuously [6].
As gamification is a psychological incentive method, the key
to improve participation is user recognition and a thorough
understanding of user behavior [8].

Trustworthiness of the submitted data is essential for
applications like public safety, crisis management, and dis-
aster preparedness [9]. In mission-critical applications, MCS
platforms rely on user reputation as an indicator of data trust-
worthiness. Malicious users modify or alter data to deliberately
provide disinformation. Upon detection of anomalies, such
as outliers in the data set, the reputation of users providing
such data reduces [10]. In the presence of malicious users,
one of the main objectives of the crowdsensing platform is
to determine the level of reliability/trustworthiness of each
user. To achieve this objective, the platform stores information
of user trustworthiness and reputation, which is dynamically
updated on the basis of the quality of contributed data. It is
worthwhile mentioning that not only malicious users can affect
quality of data, but also inaccurate sensing reading, i.e., data
coming from malfunctioning sensors [11].

In this paper, we propose a framework for trustworthiness-



driven user recruitment in MCS platforms, consisting of three
phases: i) user recruitment, ii) collaborative decision making,
and ii) badge rewarding. The phases (ii) and (iii) define a
game theoretic methodology used to incentivize participation,
and incorporate gamification tools. Although few studies have
provided preliminary analysis [12], [13], [14], the use of
gamification in crowdsensing is still widely unexplored to
this date. Application of a reward-based mechanism to rate
users trustworthiness and stimulate user participation is the
major contribution in our study. The collaborative decision
making phase exploits a voting system derived from a repeated
Subgame Perfect Equilibrium (SPE). Users voting truthfully
obtain higher reward and ensure trustworthiness of the system
by refusing to acknowledge low quality contributed data.
Extensive simulation results show that our proposed framework
improves platform utility by up to 50% and average user utility
by 15% in comparison with previous research [15].

The paper is organized as follows. Section II presents
background on related works and motivates the need for
trustworthiness in user recruitment and incentives. Section III
presents the trustworthiness-driven gamification model to re-
cruit users in mobile crowdsensing systems. Section IV provides
performance evaluation and analyzes the simulation results.
Section V concludes the work and gives future directions.

II. BACKGROUND AND MOTIVATION

With the integration of Mobile crowdsensing (MCS) into
cloud computing, Internet of things and wearable technologies,
MCS has enabled environmental monitoring, infrastructural
management and social computing applications [16]. User
recruitment is essential for the success of MCS. For such
reason, policies to foster user participation have been largely
investigated. Several comprehensive surveys review current
methodologies to design incentive mechanisms in MCS sys-
tems [3], [5], [17].

Gamification employs game mechanisms in non-gaming
contexts to motivate active user participation [6]. Gamification-
based incentivization within the MCS context has received
limited attention so far [18], [8], [19]. In crowdsourcing, use
of gamification through badge awards is studied for a popular
platform like Stack Overflow [7], and has been shown to
improve motivation of users.

Xie et al. [20] propose an incentive mechanism composed
of a rating system and a reward-based scheme. To allocate
rewards between all users, a reputation protocol is employed
to investigate users’ history and eliminate users with poor
reputation. However, new coming users are vulnerable to
elimination as they have little chance of building a reputable
history in a short time. We exert Subgame Perfect Equilibrium
(SPE) in a game-theoretic voting phase. The output of this
game is the reward granted on the basis of the utility of the
data provided and the truthfulness of users’ votes. The authors
in [21] deduced a subgame perfect equilibrium as a bidding
function to make payments more efficient to the users.

In this paper, we use both game theoretic monetary incentives
and gamification methods unlike previous studies leveraging

Table I
NOTATION USED IN THE PAPER

NOTATION DESCRIPTION

n Number of participants in each
TS Set of tasks handled by the users in the set S
Wτ Number of winners at t-th recruitment
Ni(t) Number of assigned votes to user i at time t
wj Vote capacity of user-j
ri Submitted reading of user-i
V ali Task value of user-i
xij Actual vote of user-j for user-i

R
′
i(t) Updated trustworthiness of user i at the end of ti + δ

λs Dissimilarity threshold
γr Rewarding threshold

Sijr (t) Similarity indicator of task readings of users-i and j at time-t
ρm Malicious user probability
∫ Probability of negative votes for a malicious user

∆ij
Difference between the values of sensing tasks of
user-i and j

δ Delay time between the 1st and 2nd phase
ti Submission time of task-i

ti + δ Collaboration time
τduration Duration of t-th recruitment

Vi Total vote capacity for user-i at the first phase
pi
t Total Payment to user-i at t-th recruitment

vR Total values of the tasks in the platform
Ri(t) Trustworthiness of user-i at the end of time-t
ci
t Total sensing cost to user-i at t-th recruitment

“HI-award” Category of users receiving a high reward
“LO-award” Category of users receiving a low reward

only monetary-based incentives [21], [22]. Because the evalua-
tion of data reliability in MCS has received little attention so far,
we propose a game-theoretic approach to model the interactions
among users. In this game, a voting phase is formulated to
evaluate the quality of the crowd-sensed data.

III. SYSTEM MODEL

The proposed framework is composed of the user recruitment,
game theoretic collaborative decision making and gamification-
based badge rewarding phases. The proposed model consid-
ers n>1 users to perform submitted sensing tasks through built
in sensors in mobile devices during each assignment process.

A. User Recruitment

The following methods are used to recruit users in the
first phase: 1) Trustworthy Sensing for Crowd Management
(TSCM) [10], which introduces statistical reputation-awareness
to MSensing [23] and 2) SONATA [15]. Both schemes consist
of two steps, namely the user selection and rewarding phases.
The proposed approach here, adopts only the first stage of
TSCM or SONATA based on its operation mode, i.e., statistical
or vote-based. The two methods (i.e., TSCM and SONATA)
differ in the way they ensure trustworthiness. TSCM is a
reputation-based policy, i.e., instantaneous user reputation is



statistically calculated based on true and false sensor readings.
On the contrary, SONATA, being a pure vote-based policy,
adopts Sybil detection techniques in online social networks [24]
and determines the instantaneous user reputation on the basis
of votes cast by other users sensing the same phenomenon.

MSensing is a user-centric reverse auction-based incentive
mechanism. Users join the auction with their sensing costs (i.e.,
bids) as they are guaranteed that no user will be rewarded less
than its bid in the auction [23]. The recruitment is completed
in two steps, winner selection and reward determination.
MSensing aims at maximum platform and user utility, and
it addresses the truthfulness vulnerability introduced by the
bidding mechanism. Truthfulness denotes the cases in which
users aim to increase their incomes by bidding higher than the
actual sensing costs. MSensing addresses this issue by selecting
the winners based on their marginal contributions to the total
value of the sensed tasks and their sensing costs, and sorts the
users in descending order based on the marginal gain of the
platform for recruiting each participant. User trustworthiness
is computed by TSCM scheme based on the recent and past
readings of corresponding participant.

SONATA ensures trustworthiness through user votes. The
trustworthiness of user-i at time t is calculated as the summation
of total votes normalized by overall vote capacity as follows:

Ri(t) =

∑
j|cij=1

wjx
i
jRj(t)∑

j|cij=1
wjRj(t)

. (1)

Equation (1) defines wj as the vote capacity of user-i, xij is the
actual vote of user-i and Rj is the trustworthiness of user-j at
time-t. In SONATA, the calculation of trustworthiness depends
on the votes from the other users and the initial reputation.
The vote-based user recruitment under proposed scheme in
this paper, defines user reputation based on the quality of
submitted data as opposed to SONATA where each user votes
for a new user based on the similarity score of the sensed data.
In SONATA, each user casts a negative vote for a malicious
user with a certain probability, ∫ .

The proposed method in this paper makes the second phase
adaptive such that the vote capacity of a user is increased only
if the user provides useful data. Next section provides more
details on the collaborative decision making mechanism.

Given n users are recruited by the time ti, the platform
needs to receive all captured data after a specific offset time δ
by the end of ti + δ. At time ti + δ, user collected data is
submitted to the platform, and all the participants are aware
of task value.

B. Collaborative decision making

In collaborative decision making phase, all users interact
in a game and make decisions sequentially based on the
submitted value. We formulate the problem as a Sub-game
Perfect Equilibrium (SPE). In SPE, players participate in
a subset of a game, and their strategy represents a Nash
Equilibrium [25]. In every sub game, each player behaves
rationally and independently.

We define a successive sub-game describing the users’
strategy. In this sub-game each task is assigned to m users. Each
user has two available choices: participate in the voting phase
or not to participate. The strategy each user adopts is defined
by a tuple, {V,N}, where V denotes that the user is voting,
and N signifies that user is not voting. During the voting phase,
the user casting a vote is denoted as the voter, and the user
receiving the vote is the voted. Users are not obliged to vote;
thus they can decide either to remain idle (i.e., not voting) and
obtain a payoff equal to zero or to participate in voting game
and increase their income. Besides the user trustworthiness of
each user that is assigned in the recruitment phase, participants
have the chance of increasing their trustworthiness by providing
feedback about the other users’ sensed value. The vote capacity
V

′

i (t) augments while the users vote to define trustworthiness
of data produced by the other contributors. Augmenting the
vote capacity is an incentive to motivate the users in taking part
in the voting game. Eventually when a user decides to vote, the
algorithm compares data similarity of both voter and voted. If
the dissimilarity score of the values is below a certain threshold
λs, the vote capacity of both users increases. Otherwise, the
vote capacity of the voted decreases.

The last step of the game is to determine vote reliability. One
of the main objectives of this study is to guarantee that truthful
users receive higher ratings with respect to dishonest ones. For
this, the latter type of users lose credit upon casting untruthful
votes. As a result, when the vote capacity is increased/decreased
it has a direct impact on their reputation as per (1) and, in
turns, on the achieved reward.

The collaborative voting phase consists of two steps. The
first step assesses the quality of the contributed data. For quality
assessment, the users compare the data to be judged with the
data they own at time ti + δ. This procedure is performed
sequentially. When the dissimilarity of data held by voter and
voted is above a threshold λs, the voter casts a negative vote.
In the case of a negative vote, the platform decreases the
trustworthiness of the crowdsensed data. Consequently, the
voting capacity of the voter, if casting truthful negative votes,
increases. On the contrary, when a voter casts untruthful votes,
the platform decreases its voting capacity.

The second step investigates the accuracy of the assigned
votes. As the platform has knowledge on the value of the tasks,
it can judge whether the voters have provided genuine votes
or not. As the final step, the platform diminishes the vote
capacity of users that cast misleading votes. By applying this
game between the users, the objective is to incentivize users
to collaborate for qualifying the value of sensed tasks. When
users cast correct votes, they increase their own voting capacity.
Thus, a malicious user who intends to forge the platform and
votes negatively for a user who provided trustworthy data, the
platform reduces its reputation accordingly. As a consequence
users are encouraged to provide genuine feedback about the
value of data captured by the other recruited users.

Practically, the platform rates the participants on the basis of
the following criteria: i) the value of the data they contribute,
ii) their voting trustworthiness. The rating scale is assigned ac-



cording to ∆ij(t) = |ri − rj |, which is the difference between
the readings of user i and j. The calculated binary similarity
indicator is used in the following section for badge rewarding.
The binary similarity indicator between user-i and user-j at
time-t, Sijr (t) indicates whether the data similarity criterion is
satisfied or not and is defined as follows:

∆ij(t) = |ri − rj | (2)

Sijr (t) =

{
1 if ∆ij(t)

max{ri} ≤ λs;
−1 if ∆ij(t)

max{ri} > λs.
(3)

At the end of the collaborative voting phase each user earns a
total voting capacity, which is computed by taking into account
positive and negative votes cast during each time slot. The
vote capacity of user i at time t+δ is calculated as follows:

V
′

i (t) =

|Ni(t)|∑
j=1|j∈Ni(t)

Sijr (t)

Ni(t)
, (4)

where Sijr (t) is the similarity rating feedback that user i
receives from its neighbors. At the end of the voting phase,
reputation R

′

i(t) of each user is re-calculated by using two
parameters, namely the new collaborative vote capacity (5), and
the user’s reputation Ri(t) which is defined during recruitment
phase (1).

R
′

i(t) = V
′

i (t) +Ri(t). (5)

To achieve higher vote capacity, users are motivated to provide
correct feedback. The updated reputation is utilized in the next
step as the criteria for reward assignment. As a consequence,
users never earn rewards upon providing hostile and misleading
feedback to the system.

C. Badge Rewarding

Typically incentive mechanisms focus on single actions,
while gamification considers their overall contribution [26].
Therefore, applying gamification to long term applications is
beneficial. We consider a reward-based gamification method,
where the users receive badges from the platform. In the reward-
based approach, the platform awards badges when users satisfy
a certain reward level entry [7]. Distinguishing reliable users
increases both platform and user utility. Indeed, this corresponds
to having the crowdsourcer recruiting users that contribute
qualified data in a trustworthiness fashion.

Easley et al. [7] propose two reward allocation mechanisms:
i) absolute standard mechanism Mα, and ii) a relative standard
mechanism Mρ. The absolute standard mechanism issues
badges when users provide a certain level of effort. The relative
standard mechanism awards badges when users provide certain
level of effort in comparison with the top contributor. The
relative policy is more robust than the absolute one, as it works
regardless of particular conditions of the platform such as the
number of participants.

In this paper, we adapt relative standard mechanism to select
the winners of awards; when users’ vote capacity reaches

a certain level, the platform awards them with a badge. In
this phase, the users are grouped into two categories. The
users receiving a high reward are grouped in the “HI-award”
class, while the users receiving a low reward are associated to
the “LO-award” class. (The platform distinguishes the user’s
category according to their collaboratively computed voted
capacity, which is determined in (5).

Ri(t) =

{
R

′

i(t) if Vi > γr, “HI-award”;

Ri(t) if Vi < γr, “LO-award”.
(6)

When users provides reliable data to the platform, they build
their new reputation according to R

′

i(t) (see (6)). Consequently,
the chance of achieving high award increases.

IV. PERFORMANCE EVALUATION

We simulate the proposed mechanism and compare the
system performance of SPE-based user recruitment with
the benchmark mechanism SONATA. The SPE-based user
recruitment operates in two modes, namely the vote-based
(vote-based reputation + SPE) and statistical reputation-based
(statistical reputation + SPE) modes. The former adopts the
user selection mechanism of SONATA [15] whereas the latter
adopts the user selection phase of TSCM [10], which is a
statistical reputation-based method.

A. Simulation Settings and Performance Evaluation Metrics

Similar to [15], the simulation environment consists of a
1000× 1000 terrain with 1000 users, and a user is interested
in a sensing task if the task is within 30 units of their range.
We assume three different malicious user probabilities in the
monitored terrain, 3%, 5% and 7%. The initial reputation of
users is set to 70%, and varies during the crowdsensing event.
The duration of an event is set to 30 minutes, and the platform
assigns sensing tasks under various arrival rates, i.e. 20, 40, 60,
80, 100 tasks/min. When SONATA is used in the first phase
for user recruitment, the probability of detecting a malicious
user is assume to be 20%. If the dissimilarity score between
two sensor readings is higher than 20%, the two readings are
considered as two different readings/reporting of the same task.
The value of a task is an integer that is randomly selected
out of the interval [1, 5] whereas the bids/sensing costs take
integer values from the interval [1,10]. Three metrics assess
the performance of the proposed framework:

1) Platform utility: it measures the total received useful
value from the participants deducted by the total pay-
ments awarded to the users.

Uplatform =
∑
τ

(
vR(Wτ )−

∑
i

pi
τ

)
, (7)

where vR is the total reputable values of the tasks in
the platform. Note that in both (7) and (8) piτ is the
total payment to the user-i whereas ciτ is sensing cost of
user-i during t. The parameter Wτ represents the number
of winners during the auction period τduration.

2) Average user utility: It measures the difference between
the payment received from the platform and the sensing



cost. User utility is averaged by the total numbers of
selected users in crowdsensing:

Uuser =

∑
t((
∑
i pi

τ −
∑
i ci

τ )/|Wτ |)
τduration

. (8)

3) Total amount of payment to malicious users: it measures
the reward given to malicious users.

B. Simulation Results

The first figure illustrates the effect of having three different
malicious user percentages on the platform utility. As seen in
Fig. 1, increasing the probability of having malicious users
leads to better results in SPE-based user recruitment modes
in comparison to the platform utility under SONATA. The
reason is two-fold: 1) both SPE-based modes detect more
malicious users, and, consequently, the payments to such
users decrease leading to an increase in platform utility, 2) by
incentivizing users to provide useful data, the values of received
data outperform SONATA results. Fig. 1 shows that, by having
5− 7% malicious user percentage, the maximum improvement
in platform utility is as high as 55% in reputation-based SPE
mechanism. By setting the malicious population to 3% of total
crowd population, an improvement in platform utility can still
be expected but not as high as the other two scenarios. Indeed,
this improvement is in average up to 13%.

Fig. 2 compares the three recruitment schemes in terms
of the average user utility. As expected, the degradation of
user utility is not significant. The main reason lies in the fact
that the platform pays more to the users with high number
of badges. Note that the statistical reputation-based method
improves SONATA by on average 15% and outperforms the
vote-based scheme. Indeed, in the vote-based scheme, the users
during first voting phase use more vote capacity than in the
statistical reputation-based scheme. As a result, their sensing
cost augments, diminishing the utility. Having defined the
metric in function of both cost and income, to maximize user
utility with fixed incomes it is necessary to reduce the sensing
cost.

Fig. 3 illustrates the total payment rewarded to malicious
users under different task arrival times. SPE-based user recruit-
ment provides significant improvements when compared to the
baseline solutions like SONATA. The latter method rewards
considerably malicious users while SPE-based techniques
detect such users and do not reward them at all. Clearly in
SONATA, the malicious users providing fake data and aim at
misleading the recruiter platform by building bogus reputation
and consequently reducing the system trustworthiness. More
in detail, they manipulate their sensing value to satisfy a
predefined upper threshold so that the platform recognizes
them as trustworthy users. Nevertheless the platform continues
to pay them until their reputation decreases reaching a lower
threshold. At this point an adversary is identified, and the
platform does not reward these users anymore. In the proposed
framework, SPE-based techniques intently use badges to verify
trustworthy users and identify them. Finally the platform pays
only to trusted users to improve both user and platform utilities.

V. CONCLUSION

In this paper, we designed a gamification incentive frame-
work to foster users participation in crowdsensing and to ensure
trustworthiness. The framework adopts the winner selection
mechanism from a previously proposed method, namely, Social
Network-Aided Trustworthiness Assurance (SONATA) [15],
and improves the rewarding step by integrating reputation of
the users with the awarded badges. To achieve badges, users
collaborate to build their reputation through a voting system,
derived from a repeated Subgame Perfect Equilibrium (SPE).
Extensive simulations prove that SPE method is trustworthy,
and profitable for users and crowdsensing platforms. More-
over, based on simulation results, the proposed SPE method
completely prevents the platform from paying to malicious
users.
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Figure 1. Platform utility vs. sensing task arrival rate for malicious user ratios of a) 3%, b) 5%, and c) 7%.
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Figure 2. Average user utility vs. sensing task arrival rate for malicious user ratios of a) 3%, b) 5%, and c) 7%.
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