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Abstractrecognition algorithms analyze images, extract informationsuch as the shape, size and position of the facial features(e.g., eyes, nose, mouth), and then use these extracted featuresto search a facial database to locate matching images. Thealgorithms of highest accuracy (e.g., over 90%) typicallyrequire intensive computation [1].
Another interesting trend is the plethora of lightweight

mobile devices available today, such as tablets, netbooksand smartphones. These devices are becoming increasinglypowerful, with more processing power, storage, and sensingcapabilities. In addition, it is now possible to rent computing,storage, and network resources as needed via cloud computing,
in which data is processed and stored remotely at large-scalecompute and data centers [2], [3], [4]. The ability of mobiledevices to access cloud computing resources is expected tosupport a myriad of new applications including augmentedreality, high-performance file systems, image processing (e.g.,2D to 3D transformation), secure data management and ourapplication of interest, real-time face recognition.

While there are many face recognition applications that will

benefit from the collaborative coupling of mobile and cloudcomputing, one in particular is an extension of Amber Alertsto mobile phones. In this scenario, a central authority (e.g., theFBI) would extend their Amber alerts such that all availablecell phones in the area where a missing child was last seen thatopt-in to the alert would actively capture images and performface recognition. Due to the significant amount of processingrequired to perform face recognition, as well as the need for alarge database of images with which to compare the capturedfaces in images taken by the cell phones, this application issimply not possible using the mobile devices’ compute poweralone, requiring access to cloud computing.
This paper describes our work with the design and im-

plementation of face recognition on the MOCHA (MObileCloud Hybrid Architecture) cloud computing platform, whichprovides a mobile-cloudlet-cloud architecture [5]. One of thewell-known challenges for using the cloud as a server is thelong latency between the mobile device and the cloud serverin comparison to localized computing and small-scale dis-tributed computing called cloudlet [6] . Given this challenge,our primary focus is on evaluating the performance of facerecognition algorithms using our MOCHA architecture with afocus on the overall response time as well as validating thesystem functionalities when request is sent from the mobiledevice . Our specific research question is how to distributecomputing load in order to achieve the minimal response timegiven diverse communication latencies and server computingpowers when mobile devices interact with multiple servers inthe cloud. We use smartphones as our main mobile deviceto capture images and to forward them to the cloudlet; thecloudlet performs computation on the received images and





requester (mobile device or cloudlet). We have simulated the
cloud using our internal heterogeneous compute cluster of 14
computers.

III. ALGORITHMIC OPTIMIZATION FOR MOCHA

Cloud computing is based on the fundamental concept of
sharing resources among locally and globally available cloud
servers to improve QoS and application performance. Due
to the availability of dynamic computing public and private
infrastructures, an optimal approach to partitioning computa-
tion/tasks to servers that balances performance goals such as
response time and reliability is required. Many applications
that benefit from using the cloud have real-time constraints,
with the speed of response being the driving factor for
choosing either global or local resources. Performance factors
such as processing time and communication latency directly
influence the speed of a cloud server’s response to requests
for computation on data. For example, our measurement data
shows that average propagation delays to the AWS data centers
in Virginia, Oregon and Singapore are 110, 226 and 595 msec,
respectively. These delays inflate to approximately 2, 6 and 18
seconds when the mobile device sends a 420 KB image file
to the servers. Thus, it is important to understand how the
response time is impacted by different scenarios, including
increased number of available cloud servers, changing pro-
cessing times of the cloud servers, and varying communication
latencies, as well as the impact of using the cloudlet.

Assuming a processing job consisting of multiple indepen-
dent tasks, we consider two approaches for partitioning the
computation (tasks) among the available cloud servers and
the cloudlet, assuming identical tasks. (1) Fixed: the tasks are
equally distributed among the available cloud servers (or the
cloudlet). The total response time is the time that it takes for
the last response to be returned. (2) Greedy: we first order the
servers (and the cloudlet) by their (known) response times, and
give the first task to the server (cloudlet) that can complete this
task in the minimum amount of time. We then give the second
task to the server (cloudlet) that can complete this task in the
minimum amount of time (note that this may be the same
server as given the first task if the time for the first server to
complete both tasks one and two is less than the time for the
second server to complete just task two). We continue in this
way, using a greedy approach to select the server (cloudlet)
for each task in turn. The overall response time is again the
time it takes for the last response to be returned. This is the
lower bound of response time.

The response times of these two approaches are com-
pared using Monte Carlo simulation, where a computing job
consisting of 1000 identical tasks is distributed among a
number of cloud servers with varied processing capabilities
and communication latencies and the cloudlet. In the first set
of simulations, the processing time of each cloud server is
a fixed value, chosen from a uniform distribution between
10 and 100 ms to complete each task, while the processing
time of the cloudlet is set to 100 ms to complete each
task. The latency for the communication from the cloudlet

Fig. 2. Simulated response time using varied processing times and commu-
nication latencies for 10 cloud servers.

to each cloud server is also a fixed value, chosen from a
uniform distribution between 100 ms and 1 s to send a packet
to the cloud server or from the cloud server back to the
cloudlet. We run 100 simulations where we choose different
random processing times and latencies for each of the cloud
servers. In each run, we simulate between 1 and 10 cloud
servers to assign the 1000 tasks according to the algorithm
(Fixed or Greedy). We also include results using the Fixed
and Greedy algorithms when the cloudlet is not available for
processing the data (i.e., the mobile sends the data directly
to the cloud servers). As expected, the response time of the
Greedy approach is the lowest with or without the cloudlet,
providing as much as 45% and 41% improvement in response
time as shown in Figure 2. Thus a-priori knowledge of the
cloud servers’ (cloudlet) processing times and communication
latencies enables a large speed-up in response time, given
heterogeneous cloud servers and communication latencies. We
can also see the benefit to using the cloudlet when smart
partitioning (Greedy) is used, providing improvements up to
16% compared to the Greedy approach when the cloudlet is
not used.

The fixed and greedy approaches have similar performance
when all the cloud servers have the same processing times and
communication latencies, and thus, in this scenario, a smart
partitioning approach is unnecessary. However, network condi-
tions vary dynamically, and factors like resource reliability and
system downtime are unpredictable. For example, recently, due
to an Amazon EC2 outage, cloud computing businesses like
BigDoor were disrupted [11]. In such a dynamic environment
as the Internet, all available cloud servers may not have the
same communication latencies. If we can learn about the
current conditions, we can use our optimal (greedy) approach
for partitioning the tasks. To demonstrate further the advantage
of smart partitioning when the latencies to different cloud
servers vary, we simulated a scenario with 10 cloud servers
whose processing times were all set to 1 ms per task, with the
cloudlet processing time set to 1 ms per task. The communica-
tion latencies with the cloudlet varied from no difference (all
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VII. CONCLUSIONS AND FUTURE WORK

We have presented a mobile-cloudlet-cloud architecture
called MOCHA as a platform for our target face recognition
application. This architecture is designed to minimize the
overall response time of the face detection and face recognition
algorithms given heterogeneous communication latencies and
compute powers of cloud servers at diverse geographical
placements. We have designed MOCHA to integrate mobile
devices (e.g., smartphones), the cloudlet, and multiple cloud
servers and demonstrated that cloudlets are technically feasible
and beneficial at minimal additional costs. We have used an
intuitive barrier based synchronization for utilizing multiple
cloud servers for parallelism. To our knowledge, this is the first
work to show such an architecture with the three components
working together with specific algorithms, applications, and
initial results. Our simulation results show that 1) more intel-
ligent task partitioning algorithms employed by the cloudlet
permits response-time improvement by offloading work from
the mobile device, 2) the response time decreases as the
number of cloud servers increase and this improvement is more
emphasized when cloudlets are in place, and 3) communication
latencies affect the response time considerably, which can be
partially coalesced when cloudlets are used as buffers. Our
experimental results validate the simulation results and show
that MOCHA indeed reduces the overall response time for
face recognition. We plan to extend our experiments using
real cloud services (e.g., AWS) and mobile devices (e.g., An-
droid phones) with more heterogeneous latencies and compute
powers in large-scale. Our future work also includes more
sophisticated synchronization algorithms permitting cloud-to-
cloud communications, rather than multiple cloudlet-cloud
communications links.
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