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Abstract—Face recognition applications for airport security
and surveillance can benefit from the collaborative coupling
of mobile and cloud computing as they become widely avail-
able today. This paper discusses our work with the design
and implementation of face recognition applications using our
mobile-cloudlet-cloud architecture named MOCHA and its initial
performance results. The challenge lies with how to perform task
partitioning from mobile devices to cloud and distribute compute
load among cloud servers (cloudlet) to minimize the response
time given diverse communication latencies and server compute
powers. Our preliminary simulation results show that optimal
task partitioning algorithms significantly affect response time
with heterogeneous latencies and compute powers. Motivated
by these results, we design, implement, and validate the basic
functionalities of MOCHA as a proof-of-concept, and develop
algorithms that minimize the overall response time for face
recognition. Our experimental results demonstrate that high-
powered cloudlets are technically feasible and indeed help reduce
overall processing time when face recognition applications run
on mobile devices using the cloud as the backend servers.

I. INTRODUCTION

In our daily lives, face recognition applications that au-
tomatically identify an individual from captured images or
videos are everywhere, for applications such as surveillance,
airport security, law enforcement, and border patrol. Face
recognition algorithms analyze images, extract information
such as the shape, size and position of the facial features
(e.g., eyes, nose, mouth), and then use these extracted features
to search a facial database to locate matching images. The
algorithms of highest accuracy (e.g., over 90%) typically
require intensive computation [1].

Another interesting trend is the plethora of lightweight
mobile devices available today, such as tablets, netbooks
and smartphones. These devices are becoming increasingly
powerful, with more processing power, storage, and sensing
capabilities. In addition, it is now possible to rent computing,
storage, and network resources as needed via cloud computing,
in which data is processed and stored remotely at large-scale
compute and data centers [2], [3], [4]. The ability of mobile
devices to access cloud computing resources is expected to
support a myriad of new applications including augmented
reality, high-performance file systems, image processing (e.g.,
2D to 3D transformation), secure data management and our
application of interest, real-time face recognition.

While there are many face recognition applications that will

benefit from the collaborative coupling of mobile and cloud
computing, one in particular is an extension of Amber Alerts
to mobile phones. In this scenario, a central authority (e.g., the
FBI) would extend their Amber alerts such that all available
cell phones in the area where a missing child was last seen that
opt-in to the alert would actively capture images and perform
face recognition. Due to the significant amount of processing
required to perform face recognition, as well as the need for a
large database of images with which to compare the captured
faces in images taken by the cell phones, this application is
simply not possible using the mobile devices’ compute power
alone, requiring access to cloud computing.

This paper describes our work with the design and im-
plementation of face recognition on the MOCHA (MObile
Cloud Hybrid Architecture) cloud computing platform, which
provides a mobile-cloudlet-cloud architecture [5]. One of the
well-known challenges for using the cloud as a server is the
long latency between the mobile device and the cloud server
in comparison to localized computing and small-scale dis-
tributed computing called cloudlet [6] . Given this challenge,
our primary focus is on evaluating the performance of face
recognition algorithms using our MOCHA architecture with a
focus on the overall response time as well as validating the
system functionalities when request is sent from the mobile
device . Our specific research question is how to distribute
computing load in order to achieve the minimal response time
given diverse communication latencies and server computing
powers when mobile devices interact with multiple servers in
the cloud. We use smartphones as our main mobile device
to capture images and to forward them to the cloudlet; the
cloudlet performs computation on the received images and
finds matching images from the database in collaboration with
the cloud.

Our contributions in this paper are summarized as follows:
1) We utilize a mobile-cloudlet-cloud framework and de-

velop algorithms that minimize the overall response time
for face recognition based on estimated communication
latencies and processing powers of the cloud.

2) We demonstrate that high-powered cloudlets are techni-
cally feasible and provide benefit to mobile device face
recognition applications, among others. To the best of
our knowledge, no prior work has yet shown this in
large-scale with specific architectures, algorithms, and
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applications, although some initial ideas were introduced
in the literature.

The rest of the paper is organized as follows. In Section II,
we describe our MOCHA architecture, providing the details
of each component. In Section III, we show analytically the
benefit of smart partitioning of the computation among the
cloudlet and cloud servers, for a generic job composed of
multiple independent tasks. In Section IV, we provide an
overview of the face recognition algorithm and its structure
in MOCHA. In Section V, we present results from our
experiments, and in Section VI an overview of related work is
given. Finally, we summarize our conclusions and future work
in Section VII.

II. THE MOCHA ARCHITECTURE

Despite the one order of magnitude higher computational
power of today’s mobile devices compared to just a few years
ago, the relative computational power ratio of a non-mobile
and a mobile device will stay approximately the same for
the foreseeable future, since the architectural and technolog-
ical improvements are applied to both mobile platforms as
well as desktop platforms simultaneously. The approximate
relative computational parameters for the mobile devices and
a large cloud operator, such as Amazon AWS, as well as
both a home-based and an enterprise cloudlet, are shown
in Table I. As described in the Microsoft MAUI project
[7], some applications might never be feasible from mobile
devices, due to the high latency mobile-cloud connection as
well as the complexity of managing the multiple potential
cloud servers. However, adding a cloudlet, a local device
that provides 100 to 1000 times higher computational power
with minimal latencies, creates possibilities for running latency
sensitive and computationally-intensive applications such as
face recognition from a mobile device.

Mobile Home-CL Ent-CL Cloud
Comp Power 1 100 - 10K 10K - 100K 10K - 100M

RAM 1 10 - 100 100 - 1K 1K - 10M
Storage 1 100 10K 100K - 1M

Comm Delay 1 10 10 1000
TABLE I

COMPARISON OF NORMALIZED COMPUTE-CAPABILITIES AND
COMMUNICATIONS DELAYS OF A MOBILE DEVICE, CLOUDLET (HOME-

AND ENTERPRISE-GRADE), AND THE CLOUD.

As a solution for this mobile face recognition problem,
we propose using the MOCHA architecture, illustrated in
Figure 1. Using MOCHA, mobile devices such as smart-
phones, touchpads, and laptops are connected to the cloud
(e.g., Amazon Web Services [2], Windows Azure [3]) via a
cloudlet, a dedicated server designed from commodity hard-
ware supporting multiple network connections such as 3G/4G,
Bluetooth, WiFi and Internet. The cloudlet determines how to
partition the computation among itself and multiple servers
in the cloud to optimize the overall quality of service (QoS),
based on estimates of the QoS metrics (e.g., latency, cost) over
the different links/routes and of the servers. We will discuss

cloudlet 

Mobile devices 

... 
processing in parallel 

lightweight processing 

dynamic partitioning 

Fig. 1. The MOCHA Architecture: mobile devices interact with the cloudlet
and the cloud via multiple connections and use dynamic partitioning to achieve
their QoS goals (e.g., latency, cost).

each component of the MOCHA architecture in detail in this
section.

A. Mobile Device

In our work, we assume mobile devices, such as smart
phones and iPads. The main task of our mobile device is to
acquire images and send them to the cloudlet in raw form
for pre-processing. If the cloud was near the mobile and
the communication latencies were negligible, the captured
image(s) could be sent to the cloud and a program could
be run to perform real-time template matching over a large
database located in the cloud. However, sending the raw data
(e.g., image(s)) to the cloud is very network-intensive and may
be unnecessary, since the cloud might only require a very small
subset of the information (e.g., Haar features and classifiers).
Thus pre-processing of the image(s), either at the mobile
device or at the cloudlet, is necessary. After face recognition
is complete, the mobile device receives the results back from
the cloudlet or directly from the cloud (or, in the case of the
Amber Alert application, the results are sent to an appropriate
FBI location). This entire process is performed transparently
so that the mobile user does not see any difference compared
with performing local computing at the mobile device.

B. Cloudlet

In our architecture, the cloudlet is a special-purpose inex-
pensive compute-box with the capability of massively par-
allel processing (MPP) [8], using GPUs such as an Nvidia
GT520 [9]. Our concept cloudlet has 150 single Gflop of
compute capability, 2 GB memory, and 40 W total power
consumption with a cost under $100. The cloudlet, equipped
with a GPU and a lightweight CPU (e.g., INTEL ATOM [10])
is still necessary to run the serial applications, such as the OS
kernel, as well as the algorithms described in Section III which
require high MPP power.

C. Cloud

Cloud computing provides computing and storage resources
remotely in a pay-as-you-go manner. In our system, a client
program running on the cloudlet (or the mobile device if
directly accessing the cloud) sends a request to the servers
on Amazon AWS where the actual program runs on virtual
instances in parallel, and the results are sent back to the
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requester (mobile device or cloudlet). We have simulated the
cloud using our internal heterogeneous compute cluster of 14
computers.

III. ALGORITHMIC OPTIMIZATION FOR MOCHA

Cloud computing is based on the fundamental concept of
sharing resources among locally and globally available cloud
servers to improve QoS and application performance. Due
to the availability of dynamic computing public and private
infrastructures, an optimal approach to partitioning computa-
tion/tasks to servers that balances performance goals such as
response time and reliability is required. Many applications
that benefit from using the cloud have real-time constraints,
with the speed of response being the driving factor for
choosing either global or local resources. Performance factors
such as processing time and communication latency directly
influence the speed of a cloud server’s response to requests
for computation on data. For example, our measurement data
shows that average propagation delays to the AWS data centers
in Virginia, Oregon and Singapore are 110, 226 and 595 msec,
respectively. These delays inflate to approximately 2, 6 and 18
seconds when the mobile device sends a 420 KB image file
to the servers. Thus, it is important to understand how the
response time is impacted by different scenarios, including
increased number of available cloud servers, changing pro-
cessing times of the cloud servers, and varying communication
latencies, as well as the impact of using the cloudlet.

Assuming a processing job consisting of multiple indepen-
dent tasks, we consider two approaches for partitioning the
computation (tasks) among the available cloud servers and
the cloudlet, assuming identical tasks. (1) Fixed: the tasks are
equally distributed among the available cloud servers (or the
cloudlet). The total response time is the time that it takes for
the last response to be returned. (2) Greedy: we first order the
servers (and the cloudlet) by their (known) response times, and
give the first task to the server (cloudlet) that can complete this
task in the minimum amount of time. We then give the second
task to the server (cloudlet) that can complete this task in the
minimum amount of time (note that this may be the same
server as given the first task if the time for the first server to
complete both tasks one and two is less than the time for the
second server to complete just task two). We continue in this
way, using a greedy approach to select the server (cloudlet)
for each task in turn. The overall response time is again the
time it takes for the last response to be returned. This is the
lower bound of response time.

The response times of these two approaches are com-
pared using Monte Carlo simulation, where a computing job
consisting of 1000 identical tasks is distributed among a
number of cloud servers with varied processing capabilities
and communication latencies and the cloudlet. In the first set
of simulations, the processing time of each cloud server is
a fixed value, chosen from a uniform distribution between
10 and 100 ms to complete each task, while the processing
time of the cloudlet is set to 100 ms to complete each
task. The latency for the communication from the cloudlet

Fig. 2. Simulated response time using varied processing times and commu-
nication latencies for 10 cloud servers.

to each cloud server is also a fixed value, chosen from a
uniform distribution between 100 ms and 1 s to send a packet
to the cloud server or from the cloud server back to the
cloudlet. We run 100 simulations where we choose different
random processing times and latencies for each of the cloud
servers. In each run, we simulate between 1 and 10 cloud
servers to assign the 1000 tasks according to the algorithm
(Fixed or Greedy). We also include results using the Fixed
and Greedy algorithms when the cloudlet is not available for
processing the data (i.e., the mobile sends the data directly
to the cloud servers). As expected, the response time of the
Greedy approach is the lowest with or without the cloudlet,
providing as much as 45% and 41% improvement in response
time as shown in Figure 2. Thus a-priori knowledge of the
cloud servers’ (cloudlet) processing times and communication
latencies enables a large speed-up in response time, given
heterogeneous cloud servers and communication latencies. We
can also see the benefit to using the cloudlet when smart
partitioning (Greedy) is used, providing improvements up to
16% compared to the Greedy approach when the cloudlet is
not used.

The fixed and greedy approaches have similar performance
when all the cloud servers have the same processing times and
communication latencies, and thus, in this scenario, a smart
partitioning approach is unnecessary. However, network condi-
tions vary dynamically, and factors like resource reliability and
system downtime are unpredictable. For example, recently, due
to an Amazon EC2 outage, cloud computing businesses like
BigDoor were disrupted [11]. In such a dynamic environment
as the Internet, all available cloud servers may not have the
same communication latencies. If we can learn about the
current conditions, we can use our optimal (greedy) approach
for partitioning the tasks. To demonstrate further the advantage
of smart partitioning when the latencies to different cloud
servers vary, we simulated a scenario with 10 cloud servers
whose processing times were all set to 1 ms per task, with the
cloudlet processing time set to 1 ms per task. The communica-
tion latencies with the cloudlet varied from no difference (all
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Fig. 3. Simulated response time using using a fixed processing time at each
cloud server and varying communication latencies.

latencies set to 10 ms) to an increasingly more heterogeneous
environment with latencies chosen from a uniform distribution
between 10 ms and an upper limit that varied from up to
1 s. Once again, we consider the case with and without a
cloudlet available. Figure 3 shows the response of the Greedy
and Fixed algorithms in log-scale. As clearly shown in this
figure, the benefit of smart partitioning is most pronounced
when the variations in cloud server communication latencies
are high. Therefore, knowledge of available communication
resources can greatly speed up the response time for cloud
computing applications. However, it would be difficult for a
mobile device to determine these latencies, especially given
their dynamic nature. A cloudlet when used as an intermediary
(as in the MOCHA architecture) is crucial for enabling the
estimation of link latencies and hence realizing these clear
benefits of smart partitioning. Additionally, these results show
that a speed-up of approximately 8% is possible when using
a cloudlet compared with no cloudlet.

IV. USE OF MOCHA ARCHITECTURE FOR CLOUD-BASED
FACE RECOGNITION

The previous section provided motivation for us to partition
computation among the cloudlet and our cloud servers. In
this section, we look specifically at the computation required
by our Cloud-Vision face recognition application and then
explore how these computations can be partitioned among the
cloud servers and the cloudlet. Cloud-Vision is executed in
two separate phases: 1) face detection, which uses the widely
accepted Viola-Jones algorithm [12] that progressively narrows
an initial large set of face location candidates to the final set
of detected face locations; and 2) face recognition, which uses
the classic Eigenfaces approach, initially introduced in [13] to
determine the likelihood of each detected face matching one
of the template images in a database. These two phases of
the overall Cloud-Vision concept require significant computa-
tion, as explained in detail in the following subsections, and
hence require cloud resources to perform the face recognition
application for a mobile device.

Fig. 4. Face Detection: This phase determines potential locations for
faces. This version was run using a 20x20 initial box and a 5% progressive
increment. Accuracy is around 99%.

A. Face Detection

As shown in Figure 4, the face detection phase of the overall
Cloud-Vision process determines the potential locations of
the human faces within an image. We have utilized the Haar
Features and Haar Classifiers described in [14] to perform face
detection. This iterative approach begins with fairly primitive
classifiers that group potential face candidates based on a small
number of features. These simple classifiers in this initial stage
have low computational complexity but must operate on a
large amount of data, and they produce a large number of face
candidates. The algorithm then progressively eliminates some
of these candidates by using increasingly more sophisticated
classifiers based on additional features at successive stages of
the detection pipeline, such that the final stage outputs the
detected faces with high confidence. Although the number of
remaining candidates is significantly less at each successive
stage, the complexity of the calculations increases at almost the
same rate, and thus the overall computational complexity of
each pipeline stage of this detection algorithm stays somewhat
constant. In our implementation, we use a 32-stage pipeline.

B. Face Recognition

The face recognition phase of the overall Cloud-Vision
process determines the match-likelihood of each face to a
template element from a database. The potential locations of
the faces determined in the previous face detection phase are
fed into this phase for recognition. The recognition algorithm
yields one of a few potential results for each face candidate
determined by the detector: (1) not a face, (2) a face, but
not in the database, and (3) a face and in the database. We
have employed the widely-accepted Eigenfaces approach [13],
which calculates an orthogonal set of M Eigenfaces for a
given training set of N faces, where M � N . Figure 5
shows the 29 Eigenfaces calculated for a set of 500 images
(i.e., N = 500 and M = 29). Thus each face from the
original N faces can be represented as a point within the M -
dimensional space spanned by the M Eigenfaces. This permits
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Fig. 5. Face Recognition: A set of M orthogonal face matrices (called
Eigenfaces) are used to represent the original images, permitting significant
reduction in computation recognition. 29 Eigenfaces shown in this figure are
calculated for the original 500 face templates.

a significant reduction in the amount of computation that has
to be performed to recognize a face within a given database,
as well as a significant reduction in the amount of storage
required for the template images (database).

To recognize a face, the algorithm simply transforms the
face into a point within the M -dimensional space spanned by
the Eigenfaces and calculates the Euclidean distances between
the point of the face to be detected and the points of all
template faces from the database. If the Euclidean distance
is above a large threshold, the algorithm determines that the
potential face is actually not a face (outcome (1)), meaning that
the detection algorithm yielded a false positive. Otherwise, if
the Euclidean distance is above a small threshold to all the
template faces, the algorithm determines that the face is not
in the database (outcome (2)). In this case, if desired, this face
can be added to the database by re-calculating the Eigenfaces
and the Eigenfaces representation of the newly introduced face
and updating the databases of all the cloud servers. If the
Euclidean distance to one of the template faces is below a
small threshold, the algorithm detects a match for the face
(outcome (3)).

C. Cloud-Vision: Partitioning Computation/Communication

Based on the previous sections, we observe that the Cloud-
Vision approach has a large amount of computation, thus
necessitating cloud computing resources. Additionally, this
computation can be partitioned among mulitple cloud servers
to speed up the response time. In our implementation we
assume that the mobile device, which has very limited compute
power, simply captures the image and sends this off for face
recognition. While the mobile device could directly send the
image to the cloud, this would require the mobile to coordinate
the computation partitioning, as well as the communication
with the various cloud servers. Given the limited compute
power of the mobile device, coupled with the potentially
large latency of the mobile-cloud server links, this process
can be improved with the use of the MOCHA architecture,
which provides a cloudlet for coordinating the face detection
and face recognition phases. Additionally, given the relatively

Fig. 6. Face Detection: Same program run with an initial box size of 40x40,
and a progressive increment ratio of 15%. Although this version demands 10x
lower compute-power, there is a dramatic decrease in accuracy.

greater compute power of the cloudlet, the cloudlet can provide
some initial pre-processing of the image such that less data
need to be sent to the cloud servers for performing the face
detection and face recognition tasks. Although it is possible to
model the compute nodes and the corresponding latencies as
a graph [15], [16], [17], permitting more sophisticated graph-
based synchronization algorithms, this is left as future work.

We perform different parallelizable stages of the face detec-
tion/recognition algorithm at a different cloud server (or the
cloudlet). We assume that each cloud server knows the clas-
sifier functions it must perform (i.e., the training phase of the
algorithm to produce the appropriate classifier functions [12],
[14], [18], [19] is an offline process). Given the linear nature of
the classifier functions, once part of the data has been classified
by one stage, the results of the classification can be sent to
the next stage at a different cloud server, and then this cloud
server can begin its stage of classification on the data already
completed by the previous stage. This process continues until
the cloud server performing the final stage of the face detection
algorithm, which sends the results back to the cloudlet. In this
way, large speed-ups in the detection process are possible even
though the face detection stages are pipelined. Clearly, it is
most beneficial if the stages are run on cloud servers close to
each other such that the communication latency is low.

Upon receipt of the locations of the detected faces from
the final cloud server, the cloudlet extracts the detected faces
from the original image and sends each face to a different
cloud server to perform face recognition. We assume that all
cloud servers have the template database with the Eigenfaces
and the representation of all template faces. Thus, only the
face image to be recognized must be sent to each cloud
server. For a very large template database, the cloud server
can choose to only perform recognition among a portion of
the face templates, and send the face image to other cloud
servers to perform recognition among a different portion of the
face templates. This may provide some speed-up in the face
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recognition process depending on communication latencies.
All results of the face recognition algorithm are eventually
sent back to the cloudlet, which are, then, aggregated and sent
back to the mobile device.

Although fully-dynamic partitioning is possible, distributing
the face detection stages and the face recognition tasks to
cloud servers based on the runtime characteristics of the com-
munication latencies, this is beyond the scope of this paper.
We have assumed fixed stages and placed them in different
cloud servers a-priori, such that, based on the structure of
the cloud servers, the best overall response time is achieved.
While the detailed evaluation of the utility of the cloudlet
and the response times expected from different architectural
configuration of the mobile, cloudlet and the cloud servers will
be provided in the following section, an immediate positive
outcome of adding the cloudlet layer can be observed from
Figure 6. This figure shows the face detection results with an
initial box size of 40x40 and a progressive increase of 15%
at each step. Compared to Figure 4, which has an improved
detection accuracy due to the initial box size of 20x20 and
progressive increment ratio of 5%, Figure 6 depicts a drastic
reduction in detection accuracy (i.e., only 9 out of 13, or 69%,
of the faces are detected). Both results were obtained using a
500-face database with an overall response time of 300 ms.
The only difference between the two figures is the addition
of the cloudlet as the intermediate layer, coordinating the
scheduling and performing part of the vital tasks. Despite the
10x compute-demand required to get the results in Figure 4,
the cloudlet was able to buffer a significant portion of the high
latencies among the mobile and the cloud servers, thereby
achieving a significant improvement in detection accuracy.
Although more sophisticated synchronous timing algorithms
can be utilized for the overall timing by using retiming
techniques [20], [21], this is left as future work.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Our experimental hardware platform is a distributed het-
erogeneous cluster of 13 servers, workstations and a laptop,
running either Windows 2008 Server or Windows 2007 Pro-
fessional. These computers are distributed over three separate
geographic locations, connected through a high-speed broad-
band link (5/35 Mbps upstream/downstream). We have traced
the connections and found the links to contain approximately
8 to 10 hops with a round-trip ping latency of 20 to 40 ms.

Our development platform is Microsoft Visual Studio 2010
C++, and Open CV libraries [18] for the development of our
face detection and face recognition programs. The program
we have developed resides in every member of the cluster,
assuming either the cloudlet or cloud-server responsibility.
There is only one cloudlet in our setup and multiple cloud
servers. To narrow the scope of this extensive development
process, we have made some simplifications:

1) Since we are assuming that, the mobile is only re-
sponsible of sending the raw image (in compressed JPG
format) to the cloudlet, this process is not repeated during

our experiments. Constant mobile transfer time is added in
every experiment. 2) Rather than specific hardware, we have
only used one CPU thread to emulate the cloudlet. 3) We have
restricted the number of geographical locations to three, which
is sufficient to prove our concept. 4) We have left the usage of
GPUs as future work, as it is not needed to prove our concept
of MOCHA.

Our cloud / cloudlet software sends request and response
packets directly from the cloudlet emulator to the cloud
servers. The cloudlet code is by-passed to emulate the scenario
when there is no cloudlet. This prohibits any speed-up to be
gained from utilizing the cloudlet, such as running intelligent
scheduling algorithms, or performing a portion of the work
without dispatching to the cloud. To emulate the speed of a
mobile device, we have run the same cloudlet code in a loop
of 10x, which is consistent with the relative mobile/cloudlet
compute-power ratios reported in Table I.

UNIVERSITY CPU Speed C/T CompPow
PC1 i7-990x 3.73GHz 6C/12T 1.00
PC2 DX48BT2 2.83GHz 4C/4T 0.49
PC3 i7-960 3.2GHz 4C/8T 0.68
PC4 i7-930 2.8GHz 4C/8T 0.60
PC5 i7-2620M 3.4GHz 4C/8T 0.61
PC6 i7-960 3.2GHz 4C/8T 0.68
PC7 i7-960 3.2GHz 4C/8T 0.68

OFFSITE 1 CPU Speed C/T CompPow
PC8 i7-980x 3.6GHz 6C/12T 0.97
PC9 i7-2600 3.4GHz 4C/8T 0.67

PC10 i7-2600 3.4GHz 4C/8T 0.67
OFFSITE 2 CPU Speed C/T CompPow

PC11 i7-980x 3.6GHz 6C/12T 0.97
PC12 i7-930 3.8GHz 4C/8T 0.60
PC13 i7-930 2.66GHz 4C/8T 0.60

TABLE II
HARDWARE USED FOR THE EXPERIMENTS. PC1 AT THE UNIVERSITY ALSO
EMULATES THE CLOUDLET. CPUS USED IN THE SERVERS ARE REPORTED

IN TERMS OF THEIR CORES/THREADS (C/T) AND THEIR NORMALIZED
COMPUTE-POWERS (COMPPOW).

Table II shows the list of our equipment and their geograph-
ical distribution. The main location, our university, contains
the laptop, cloudlet emulator, mobile emulator, and a majority
of the cloud servers. The other locations were accessed using
Microsoft Remote desktop to run the software we have devel-
oped. Our software uses request and response TCP/IP packets
for communication, similar to MPI. Each packet contains a
task-code for a task (e.g., calculate Haar classifier number 45).
Each response packet contains the answer to its corresponding
request packet. Our results have been reported by utilizing
timers placed inside the code.

B. Experimental Results

Figure 7 shows the response times for the Fixed and Greedy
algorithms using no cloudlet and an emulated cloudlet. As
shown in this figure, performing sophisticated task partition-
ing and a portion of the task demands significantly higher
compute-power from the mobile device then is available. This
is due to the two to five order of magnitude compute-power
difference between the mobile and the cloudlet as shown in
Table I. When the number of cloud servers increases, the
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Fig. 7. Measurement of the response times using fixed and greedy
approaches. Cloudlet and no-cloudlet scenarioes are also depicted.

performance in fact decreases due to the extreme compute-
strain on the mobile device. A state-of-the-art mobile device
contains a dual-core 1GHz ARM-based CPU as of today with
a 1W power budget. Alternatively a cloudlet with a 50W power
budget and cost of under $100 can be two to three orders of
magnitude more efficient compared to the mobile device. This
difference is further emphasized since this extreme compute-
demand over-taxes the mobile device as the workload increases
(e.g., excessive threading will cause cache memory thrashing
and excessive context switching, causing a steep performance
drop-off). To prove this concept, we observe this performance
inflection point at above four cloud servers.

As shown in Figure 7, no such slowdown is evident when a
cloudlet is used. Owing to its two order-of-magnitude higher
power budget, the cloudlet can successfully schedule tasks
to more than ten cloud servers on different CPU threads,
send and receive packets from the Internet on different CPU
threads, and perform a portion of the tasks by itself during idle
cycles. By intelligently offloading the necessary tasks from
the mobile device, the cloudlet serves as a compute and/or
communications buffer for the mobile device. This synergistic
coupling of the mobile-cloudlet dramatically improves the
overall response time by permitting the mobile device to
perform tasks that are only possible to be performed by a
50W desktop device.

Using the Greedy algorithm (which is more realistic since
some degree of run-time information is typically available,
permitting this approach), we observe a near-2x speed-up
from Figure 7 when the cloudlet is utilized with 13 cloud
servers. Alternatively, this difference is smaller when four or
fewer cloud servers are used. This result is consistent with
our simulations in Section III for low server counts. However,
the difference becomes larger since our simulations did not
take into account the compute-strain in the mobile device. In
case of the high server count, it becomes a daunting task for
the mobile device to capture images from the camera, dispatch

them to multiple cloud servers, and process the results that are
received, thereby causing the performance inflection point.

VI. RELATED WORK

The rapid advancements in mobile technology and cloud
computing have enabled many mobile cloud computing appli-
cations. Irrespective of the security concern presented in [22],
where face recognition and cloud computing is used to match a
snapshot with a person’s online identity in less than a minute,
the smartphones’s resources and cloud computing techniques
needs to be exploited to benefit applications that utilizes Big
Data. In [23] Hyrax enables smartphone applications to form
a distributed computing cloud, which implements Hadoop
[24] in Android phones using MapReduce function. Similarly,
Huerta-Canepa and Lee [25] developed ad-hoc cloud comput-
ing architecture motivated by smartphone’s ubiquitousness and
available resources. Chun and Maniatis [26] investigate the
feasibility of dynamically partitioning application processing
between weak devices (i.e., smartphones) and clouds. They
formulated this partitioning problem as an optimization that
minimizes execution time given resource constraints. Inspired
by the fact that the data access patterns of many mobile
applications depend on the current location of the user, Where-
Store [27] caches cloud data on the phone based on location
information using the current location and the prediction of
future locations.

Energy efficiency of smart mobile devices is studied in
conjunction with cloud computing in [28]. RACE [29] pro-
poses the idea that mobile phones can act as data relay
nodes to augment network connectivity between servers and
the battery-constrained mobile devices. Motivated by the fact
that virtual data centers in the cloud partition compute power
but have little control over network bandwidth partitioning,
Seawall [30] explores possibilities that clients share network
resources in such a way that each of them isolate themselves
from others fairly. The software architecture in smartphones
in support of secure personal clouds is discussed in [31].
CasCap [32] is a cloud-assisted context-aware power man-
agement framework that utilizes the resources in the cloud
to support secure, low-cost and efficient power management
for mobile devices. Gilbert et al. [33] propose a visionary
system that automatically validates how secure mobile apps
are at app markets using cloud computing. In [34] Berriman
et al used Montage image mosaic engine to compare the cost
and performance of processing images on the Amazon EC2
cloud and Abe high performance cluster at National Center
for Supercomputing Applications (NCSA) to emphasize the
necessity of provenance management.

In this paper we analyze the different communication
strategies chosen to achieve performance like response time
and cost for face recognition application using comprehensive
algorithm that can accelerate computation and communication
within the cloud. In addition, we investigate whether high-
powered cloudlets are technically feasible and cost-effective
using GPUs for efficient mobile-cloud interactions.
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VII. CONCLUSIONS AND FUTURE WORK

We have presented a mobile-cloudlet-cloud architecture
called MOCHA as a platform for our target face recognition
application. This architecture is designed to minimize the
overall response time of the face detection and face recognition
algorithms given heterogeneous communication latencies and
compute powers of cloud servers at diverse geographical
placements. We have designed MOCHA to integrate mobile
devices (e.g., smartphones), the cloudlet, and multiple cloud
servers and demonstrated that cloudlets are technically feasible
and beneficial at minimal additional costs. We have used an
intuitive barrier based synchronization for utilizing multiple
cloud servers for parallelism. To our knowledge, this is the first
work to show such an architecture with the three components
working together with specific algorithms, applications, and
initial results. Our simulation results show that 1) more intel-
ligent task partitioning algorithms employed by the cloudlet
permits response-time improvement by offloading work from
the mobile device, 2) the response time decreases as the
number of cloud servers increase and this improvement is more
emphasized when cloudlets are in place, and 3) communication
latencies affect the response time considerably, which can be
partially coalesced when cloudlets are used as buffers. Our
experimental results validate the simulation results and show
that MOCHA indeed reduces the overall response time for
face recognition. We plan to extend our experiments using
real cloud services (e.g., AWS) and mobile devices (e.g., An-
droid phones) with more heterogeneous latencies and compute
powers in large-scale. Our future work also includes more
sophisticated synchronization algorithms permitting cloud-to-
cloud communications, rather than multiple cloudlet-cloud
communications links.
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